BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26151212)

  • 21. Sensor responses to fat food aroma: a comprehensive study of dry-cured ham typicality.
    García-González DL; Tena N; Aparicio-Ruiz R; Aparicio R
    Talanta; 2014 Mar; 120():342-8. PubMed ID: 24468380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning applied to chemical analysis: sensing multiple biomarkers in simulated breath using a temperature-pulsed electronic-nose.
    Rogers PH; Benkstein KD; Semancik S
    Anal Chem; 2012 Nov; 84(22):9774-81. PubMed ID: 23009701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of odor intensity by an electronic nose.
    Hudon G; Guy C; Hermia J
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1750-8. PubMed ID: 11288303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of lipid oxidation of Chinese-style sausage during processing and storage based on electronic nose.
    Gu X; Sun Y; Tu K; Pan L
    Meat Sci; 2017 Nov; 133():1-9. PubMed ID: 28577374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemiresistive Sensor Array and Machine Learning Classification of Food.
    Schroeder V; Evans ED; Wu YM; Voll CA; McDonald BR; Savagatrup S; Swager TM
    ACS Sens; 2019 Aug; 4(8):2101-2108. PubMed ID: 31339035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation.
    Valdez LF; Gutiérrez JM
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Five Typical Stenches Detection Using an Electronic Nose.
    Jiang W; Gao D
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of multi-concentration aromatic fragrances with electronic nose technology using a support vector machine.
    Kim ST; Choi IH; Li H
    Anal Methods; 2021 Oct; 13(40):4710-4717. PubMed ID: 34617937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Identification of Curcuma herbs using XGBoost algorithm in electronic nose odor fingerprint].
    Gong JT; Wang JY; Li L; Xu D; Cong Y; Guan JL; Wu HZ; Zou HQ; Yan YH
    Zhongguo Zhong Yao Za Zhi; 2019 Dec; 44(24):5375-5381. PubMed ID: 32237383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation.
    Tian H; Li F; Qin L; Yu H; Ma X
    J Food Sci; 2014 Nov; 79(11):S2346-53. PubMed ID: 25311825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensor-Array Optimization Based on Time-Series Data Analytics for Sanitation-Related Malodor Detection.
    Zhou J; Welling CM; Vasquez MM; Grego S; Chakrabarty K
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):705-714. PubMed ID: 32746345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A discriminant distance based composite vector selection method for odor classification.
    Choi SI; Jeong GM
    Sensors (Basel); 2014 Apr; 14(4):6938-51. PubMed ID: 24747735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage.
    Berna AZ; Trowell S; Cynkar W; Cozzolino D
    J Agric Food Chem; 2008 May; 56(9):3238-44. PubMed ID: 18412363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of odorants in the vapor phase using composite features for a portable e-nose system.
    Choi SI; Jeong GM; Kim C
    Sensors (Basel); 2012 Nov; 12(12):16182-93. PubMed ID: 23443373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.
    Russo M; di Sanzo R; Cefaly V; Carabetta S; Serra D; Fuda S
    Food Chem; 2013 Nov; 141(2):896-9. PubMed ID: 23790864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of different chemometrics approaches for the robust classification of electronic nose data.
    Gromski PS; Correa E; Vaughan AA; Wedge DC; Turner ML; Goodacre R
    Anal Bioanal Chem; 2014 Nov; 406(29):7581-90. PubMed ID: 25286877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a Low-Cost Electronic Nose with an Open Sensor Chamber: Application to Detection of
    Borowik P; Grzywacz T; Tarakowski R; Tkaczyk M; Ślusarski S; Dyshko V; Oszako T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath.
    Chen Q; Chen Z; Liu D; He Z; Wu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17713-17724. PubMed ID: 32203649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new kernel discriminant analysis framework for electronic nose recognition.
    Zhang L; Tian FC
    Anal Chim Acta; 2014 Mar; 816():8-17. PubMed ID: 24580850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors.
    Palacín J; Rubies E; Clotet E; Martínez D
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.