BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26151312)

  • 21. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text.
    Xu R; Li L; Wang Q
    BMC Bioinformatics; 2014 Apr; 15():105. PubMed ID: 24725842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing a knowledge-driven approach to a supervised machine learning approach in large-scale extraction of drug-side effect relationships from free-text biomedical literature.
    Xu R; Wang Q
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S6. PubMed ID: 25860223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery.
    Jia Z; Liu Y; Guan N; Bo X; Luo Z; Barnes MR
    BMC Genomics; 2016 May; 17():414. PubMed ID: 27234029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical Trials and Therapeutic Rationale for Drug Repurposing in Schizophrenia.
    Lago SG; Bahn S
    ACS Chem Neurosci; 2019 Jan; 10(1):58-78. PubMed ID: 29944339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning.
    Shameer K; Glicksberg BS; Hodos R; Johnson KW; Badgeley MA; Readhead B; Tomlinson MS; O'Connor T; Miotto R; Kidd BA; Chen R; Ma'ayan A; Dudley JT
    Brief Bioinform; 2018 Jul; 19(4):656-678. PubMed ID: 28200013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenome-driven disease genetics prediction toward drug discovery.
    Chen Y; Li L; Zhang GQ; Xu R
    Bioinformatics; 2015 Jun; 31(12):i276-83. PubMed ID: 26072493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding.
    Chen H; Cheng F; Li J
    PLoS Comput Biol; 2020 Jul; 16(7):e1008040. PubMed ID: 32667925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting new indications for approved drugs using a proteochemometric method.
    Dakshanamurthy S; Issa NT; Assefnia S; Seshasayee A; Peters OJ; Madhavan S; Uren A; Brown ML; Byers SW
    J Med Chem; 2012 Aug; 55(15):6832-48. PubMed ID: 22780961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of schizophrenia adverse drug interactions through a network approach and drug classification.
    Sun J; Zhao M; Fanous AH; Zhao Z
    Biomed Res Int; 2013; 2013():458989. PubMed ID: 24089679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leveraging Big Data to Transform Drug Discovery.
    Glicksberg BS; Li L; Chen R; Dudley J; Chen B
    Methods Mol Biol; 2019; 1939():91-118. PubMed ID: 30848458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systems biology based drug repositioning for development of cancer therapy.
    Turanli B; Altay O; Borén J; Turkez H; Nielsen J; Uhlen M; Arga KY; Mardinoglu A
    Semin Cancer Biol; 2021 Jan; 68():47-58. PubMed ID: 31568815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuroinflammation and oxidative stress in schizophrenia: are these opportunities for repurposing?
    Ansari Z; Pawar S; Seetharaman R
    Postgrad Med; 2022 Mar; 134(2):187-199. PubMed ID: 34766870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of validation strategies for computational drug repositioning.
    Brown AS; Patel CJ
    Brief Bioinform; 2018 Jan; 19(1):174-177. PubMed ID: 27881429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A phenome-guided drug repositioning through a latent variable model.
    Bisgin H; Liu Z; Fang H; Kelly R; Xu X; Tong W
    BMC Bioinformatics; 2014 Aug; 15(1):267. PubMed ID: 25103881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational drug repositioning for cancer therapeutics.
    Jiao M; Liu G; Xue Y; Ding C
    Curr Top Med Chem; 2015; 15(8):767-75. PubMed ID: 25732789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures.
    Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M
    BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Recent Developments and Progress in Computational Drug Repositioning.
    Shi W; Chen X; Deng L
    Curr Pharm Des; 2020; 26(26):3059-3068. PubMed ID: 31951162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico drug repositioning: from large-scale transcriptome data to therapeutics.
    Kwon OS; Kim W; Cha HJ; Lee H
    Arch Pharm Res; 2019 Oct; 42(10):879-889. PubMed ID: 31482491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.