These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 26151647)
1. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry. Parambath Kanoth B; Claudino M; Johansson M; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2015 Aug; 7(30):16303-10. PubMed ID: 26151647 [TBL] [Abstract][Full Text] [Related]
2. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber. Zhu G; Dufresne A Carbohydr Polym; 2022 Feb; 278():118954. PubMed ID: 34973770 [TBL] [Abstract][Full Text] [Related]
3. Effects of the surface chemical groups of cellulose nanocrystals on the vulcanization and mechanical properties of natural rubber/cellulose nanocrystals nanocomposites. Hu J; Wu H; Liang S; Tian X; Liu K; Jiang M; Dominic CDM; Zhao H; Duan Y; Zhang J Int J Biol Macromol; 2023 Mar; 230():123168. PubMed ID: 36621734 [TBL] [Abstract][Full Text] [Related]
4. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Flauzino Neto WP; Mariano M; da Silva ISV; Silvério HA; Putaux JL; Otaguro H; Pasquini D; Dufresne A Carbohydr Polym; 2016 Nov; 153():143-152. PubMed ID: 27561481 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Mariano M; El Kissi N; Dufresne A Carbohydr Polym; 2016 Feb; 137():174-183. PubMed ID: 26686118 [TBL] [Abstract][Full Text] [Related]
7. Compatibilization of Cellulose Nanocrystal-Reinforced Natural Rubber Nanocomposite by Modified Natural Rubber. Jantachum P; Phinyocheep P Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337252 [TBL] [Abstract][Full Text] [Related]
8. Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters. Annamalai PK; Dagnon KL; Monemian S; Foster EJ; Rowan SJ; Weder C ACS Appl Mater Interfaces; 2014 Jan; 6(2):967-76. PubMed ID: 24354282 [TBL] [Abstract][Full Text] [Related]
9. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Nagalakshmaiah M; El Kissi N; Mortha G; Dufresne A Carbohydr Polym; 2016 Jan; 136():945-54. PubMed ID: 26572433 [TBL] [Abstract][Full Text] [Related]
10. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Xu X; Liu F; Jiang L; Zhu JY; Haagenson D; Wiesenborn DP ACS Appl Mater Interfaces; 2013 Apr; 5(8):2999-3009. PubMed ID: 23521616 [TBL] [Abstract][Full Text] [Related]
11. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Zainuddin SY; Ahmad I; Kargarzadeh H; Abdullah I; Dufresne A Carbohydr Polym; 2013 Feb; 92(2):2299-305. PubMed ID: 23399291 [TBL] [Abstract][Full Text] [Related]
12. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Oun AA; Rhim JW Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095 [TBL] [Abstract][Full Text] [Related]
13. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728 [TBL] [Abstract][Full Text] [Related]
14. Enhanced interfacial interaction between modified cellulose nanocrystals and epoxidized natural rubber via ultraviolet irradiation. Somseemee O; Saeoui P; Schevenels FT; Siriwong C Sci Rep; 2022 Apr; 12(1):6682. PubMed ID: 35461316 [TBL] [Abstract][Full Text] [Related]
15. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. Jorfi M; Roberts MN; Foster EJ; Weder C ACS Appl Mater Interfaces; 2013 Feb; 5(4):1517-26. PubMed ID: 23379302 [TBL] [Abstract][Full Text] [Related]
16. Bioderived Rubber-Cellulose Nanocrystal Composites with Tunable Water-Responsive Adaptive Mechanical Behavior. Tian M; Zhen X; Wang Z; Zou H; Zhang L; Ning N ACS Appl Mater Interfaces; 2017 Feb; 9(7):6482-6487. PubMed ID: 28116897 [TBL] [Abstract][Full Text] [Related]
17. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. de Mesquita JP; Donnici CL; Teixeira IF; Pereira FV Carbohydr Polym; 2012 Sep; 90(1):210-7. PubMed ID: 24751032 [TBL] [Abstract][Full Text] [Related]
18. Release of Cellulose Nanocrystal Particles from Natural Rubber Latex Composites into Immersed Aqueous Media. Gong X; Liu T; Zhang H; Liu Y; Boluk Y ACS Appl Bio Mater; 2021 Feb; 4(2):1413-1423. PubMed ID: 35014492 [TBL] [Abstract][Full Text] [Related]
19. Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites. Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904515 [TBL] [Abstract][Full Text] [Related]
20. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix. Ansari F; Salajková M; Zhou Q; Berglund LA Biomacromolecules; 2015 Dec; 16(12):3916-24. PubMed ID: 26505077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]