These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26151651)

  • 41. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles.
    Bezbaruah AN; Thompson JM; Chisholm BJ
    J Environ Sci Health B; 2009 Aug; 44(6):518-24. PubMed ID: 20183057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract.
    Subba Rao Y; Kotakadi VS; Prasad TN; Reddy AV; Sai Gopal DV
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():156-9. PubMed ID: 23257344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation.
    Visentin C; Trentin AWDS; Braun AB; Thomé A
    Environ Pollut; 2021 Jan; 268(Pt B):115915. PubMed ID: 33126160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria.
    Rónavári A; Balázs M; Tolmacsov P; Molnár C; Kiss I; Kukovecz Á; Kónya Z
    Water Res; 2016 May; 95():165-73. PubMed ID: 26994337
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles.
    Dubey SP; Dwivedi AD; Lahtinen M; Lee C; Kwon YN; Sillanpaa M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():134-42. PubMed ID: 23257341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications.
    Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ
    J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles.
    Xie Y; Fang Z; Qiu X; Tsang EP; Liang B
    Chemosphere; 2014 Aug; 108():433-6. PubMed ID: 24582360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green.
    Huang L; Weng X; Chen Z; Megharaj M; Naidu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():801-4. PubMed ID: 24094918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments.
    Paar H; Ruhl AS; Jekel M
    Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres.
    Qiu X; Fang Z; Liang B; Gu F; Xu Z
    J Hazard Mater; 2011 Oct; 193():70-81. PubMed ID: 21802203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.
    Wei CJ; Li XY
    Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium.
    Samadi Z; Yaghmaeian K; Mortazavi-Derazkola S; Khosravi R; Nabizadeh R; Alimohammadi M
    Bioorg Chem; 2021 Sep; 114():105051. PubMed ID: 34116265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of atrazine by nanoscale zero valent iron supported on organobentonite.
    Zhang Y; Li Y; Zheng X
    Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitigation of Fe(0) nanoparticles toxicity to Trichosporon cutaneum by humic substances.
    Pádrová K; Maťátková O; Šiková M; Füzik T; Masák J; Čejková A; Jirků V
    N Biotechnol; 2016 Jan; 33(1):144-52. PubMed ID: 26455640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications.
    Huang Q; Shi X; Pinto RA; Petersen EJ; Weber WJ
    Environ Sci Technol; 2008 Dec; 42(23):8884-9. PubMed ID: 19192813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation.
    Vanzetto GV; Thomé A
    Environ Pollut; 2019 Sep; 252(Pt A):74-83. PubMed ID: 31146240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction.
    Mystrioti C; Xanthopoulou TD; Tsakiridis P; Papassiopi N; Xenidis A
    Sci Total Environ; 2016 Jan; 539():105-113. PubMed ID: 26356183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale.
    Sheny DS; Philip D; Mathew J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():35-8. PubMed ID: 22349890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.