These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 26151771)
1. Spinal cord injury affects I-wave facilitation in human motor cortex. Nardone R; Höller Y; Bathke AC; Orioli A; Schwenker K; Frey V; Golaszewski S; Brigo F; Trinka E Brain Res Bull; 2015 Jul; 116():93-7. PubMed ID: 26151771 [TBL] [Abstract][Full Text] [Related]
2. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury. Bunday KL; Perez MA J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796 [TBL] [Abstract][Full Text] [Related]
3. A novel cortical target to enhance hand motor output in humans with spinal cord injury. Long J; Federico P; Perez MA Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131 [TBL] [Abstract][Full Text] [Related]
4. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury. Roy FD; Yang JF; Gorassini MA J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733 [TBL] [Abstract][Full Text] [Related]
5. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Nardone R; Höller Y; Brigo F; Orioli A; Tezzon F; Schwenker K; Christova M; Golaszewski S; Trinka E Brain Res; 2015 Sep; 1619():139-54. PubMed ID: 25251591 [TBL] [Abstract][Full Text] [Related]
6. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466 [TBL] [Abstract][Full Text] [Related]
7. Short-interval intracortical inhibition with incomplete spinal cord injury. Roy FD; Zewdie ET; Gorassini MA Clin Neurophysiol; 2011 Jul; 122(7):1387-95. PubMed ID: 21295518 [TBL] [Abstract][Full Text] [Related]
8. Assessment of corticospinal excitability after traumatic spinal cord injury using MEP recruitment curves: a preliminary TMS study. Nardone R; Höller Y; Thomschewski A; Bathke AC; Ellis AR; Golaszewski SM; Brigo F; Trinka E Spinal Cord; 2015 Jul; 53(7):534-8. PubMed ID: 25665538 [TBL] [Abstract][Full Text] [Related]
9. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions. Stein RB; Everaert DG; Roy FD; Chong S; Soleimani M J Clin Neurophysiol; 2013 Feb; 30(1):66-78. PubMed ID: 23377445 [TBL] [Abstract][Full Text] [Related]
10. Short- and Long-Intracortical Inhibition in Incomplete Spinal Cord Injury. Mi YP; Bailey AZ; Nelson AJ Can J Neurol Sci; 2016 Jan; 43(1):183-91. PubMed ID: 26786645 [TBL] [Abstract][Full Text] [Related]
11. Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury. Cirillo J; Calabro FJ; Perez MA Cereb Cortex; 2016 May; 26(5):2167-77. PubMed ID: 25814508 [TBL] [Abstract][Full Text] [Related]
12. Fatigue-induced motor cortex excitability changes in subjects with spinal cord injury. Nardone R; Höller Y; Brigo F; Höller P; Christova M; Tezzon F; Golaszewski S; Trinka E Brain Res Bull; 2013 Oct; 99():9-12. PubMed ID: 24045114 [TBL] [Abstract][Full Text] [Related]
13. Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex. Di Lazzaro V; Ranieri F; Profice P; Pilato F; Mazzone P; Capone F; Insola A; Oliviero A Brain Stimul; 2013 Jul; 6(4):641-3. PubMed ID: 23085442 [TBL] [Abstract][Full Text] [Related]
14. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury. Murray LM; Edwards DJ; Ruffini G; Labar D; Stampas A; Pascual-Leone A; Cortes M Arch Phys Med Rehabil; 2015 Apr; 96(4 Suppl):S114-21. PubMed ID: 25461825 [TBL] [Abstract][Full Text] [Related]
15. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. Kesselheim J; Takemi M; Christiansen L; Karabanov AN; Siebner HR J Neurophysiol; 2023 Feb; 129(2):410-420. PubMed ID: 36629338 [TBL] [Abstract][Full Text] [Related]
16. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians. Nordstrom MA; Butler SL Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815 [TBL] [Abstract][Full Text] [Related]
17. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. Urbin MA; Ozdemir RA; Tazoe T; Perez MA J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994 [TBL] [Abstract][Full Text] [Related]
18. Corticospinal inhibition investigated in relation to upper extremity motor function in cervical spinal cord injury. Arora T; Liu J; Mohan A; Li X; O'laughlin K; Bennett T; Nemunaitis G; Bethoux F; Pundik S; Forrest G; Kirshblum S; Kilgore K; Bryden A; Kristi Henzel M; Wang X; Baker K; Brihmat N; Bayram M; Plow EB Clin Neurophysiol; 2024 May; 161():188-197. PubMed ID: 38520799 [TBL] [Abstract][Full Text] [Related]
19. Motor cortex disinhibition in normal-pressure hydrocephalus. Chistyakov AV; Hafner H; Sinai A; Kaplan B; Zaaroor M J Neurosurg; 2012 Feb; 116(2):453-9. PubMed ID: 21999318 [TBL] [Abstract][Full Text] [Related]
20. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. Sangari S; Perez MA J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]