These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26152396)

  • 21. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
    Ye C; Chen A; Colombo P; Martinez C
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S461-73. PubMed ID: 20484226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology.
    Hennequin Y; Pannacci N; de Torres CP; Tetradis-Meris G; Chapuliot S; Bouchaud E; Tabeling P
    Langmuir; 2009 Jul; 25(14):7857-61. PubMed ID: 19594177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double emulsion templated microcapsules with single hollow cavities and thickness-controllable shells.
    Gao F; Su ZG; Wang P; Ma GH
    Langmuir; 2009 Apr; 25(6):3832-8. PubMed ID: 19227987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust scalable high throughput production of monodisperse drops.
    Amstad E; Chemama M; Eggersdorfer M; Arriaga LR; Brenner MP; Weitz DA
    Lab Chip; 2016 Oct; 16(21):4163-4172. PubMed ID: 27714028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of emulsion droplets by organo-silica shells.
    Zoldesi CI; Steegstra P; Imhof A
    J Colloid Interface Sci; 2007 Apr; 308(1):121-9. PubMed ID: 17240392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of core-shell CaCO3 capsules via Pickering emulsion templates.
    Wang X; Zhou W; Cao J; Liu W; Zhu S
    J Colloid Interface Sci; 2012 Apr; 372(1):24-31. PubMed ID: 22318120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechano-responsive microcapsules with uniform thin shells.
    Vian A; Amstad E
    Soft Matter; 2019 Feb; 15(6):1290-1296. PubMed ID: 30468441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions.
    Nawar S; Stolaroff JK; Ye C; Wu H; Nguyen DT; Xin F; Weitz DA
    Lab Chip; 2020 Jan; 20(1):147-154. PubMed ID: 31782446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions.
    Hou L; Ren Y; Jia Y; Deng X; Liu W; Feng X; Jiang H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12282-12289. PubMed ID: 28345345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of colloidal silica crystals inside double emulsion drops.
    Shirk K; Steiner C; Kim JW; Marquez M; Martinez CJ
    Langmuir; 2013 Sep; 29(38):11849-57. PubMed ID: 23957634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong Microcapsules with Permeable Porous Shells Made through Phase Separation in Double Emulsions.
    Loiseau E; Niedermair F; Albrecht G; Frey M; Hauser A; Rühs PA; Studart AR
    Langmuir; 2017 Mar; 33(9):2402-2410. PubMed ID: 28195737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correction: Double-emulsion drops with ultra-thin shells for capsule templates.
    Kim SH; Kim JW; Cho JC; Weitz DA
    Lab Chip; 2017 Jan; 17(3):567. PubMed ID: 28085166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic approach for encapsulation via double emulsions.
    Wang W; Zhang MJ; Chu LY
    Curr Opin Pharmacol; 2014 Oct; 18():35-41. PubMed ID: 25194838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.
    do Nascimento DF; Arriaga LR; Eggersdorfer M; Ziblat R; Marques Mde F; Reynaud F; Koehler SA; Weitz DA
    Langmuir; 2016 May; 32(21):5350-5. PubMed ID: 27192611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.