BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26152700)

  • 1. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.
    Esparza M; Jedlicki E; Dopson M; Holmes DS
    FEMS Microbiol Lett; 2015 Aug; 362(15):fnv108. PubMed ID: 26152700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans.
    Esparza M; Cárdenas JP; Bowien B; Jedlicki E; Holmes DS
    BMC Microbiol; 2010 Aug; 10():229. PubMed ID: 20799944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16.
    Gruber S; Schwab H; Heidinger P
    J Biotechnol; 2017 Sep; 257():78-86. PubMed ID: 28687513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha.
    Grzeszik C; Jeffke T; Schäferjohann J; Kusian B; Bowien B
    J Mol Microbiol Biotechnol; 2000 Jul; 2(3):311-20. PubMed ID: 10937440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha.
    Bowien B; Kusian B
    Arch Microbiol; 2002 Aug; 178(2):85-93. PubMed ID: 12115053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation.
    Dangel AW; Tabita FR
    Microbiology (Reading); 2015 Sep; 161(9):1816-1829. PubMed ID: 26296349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the cbb operon (CO2 assimilation) promoter of Ralstonia eutropha.
    Jeffke T; Gropp NH; Kaiser C; Grzeszik C; Kusian B; Bowien B
    J Bacteriol; 1999 Jul; 181(14):4374-80. PubMed ID: 10400596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
    Dangel AW; Tabita FR
    J Bacteriol; 2015 Nov; 197(22):3488-98. PubMed ID: 26324454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus.
    Vichivanives P; Bird TH; Bauer CE; Robert Tabita F
    J Mol Biol; 2000 Jul; 300(5):1079-99. PubMed ID: 10903856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides.
    Dangel AW; Tabita FR
    Mol Microbiol; 2009 Feb; 71(3):717-29. PubMed ID: 19077171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor.
    van Keulen G; Girbal L; van den Bergh ER; Dijkhuizen L; Meijer WG
    J Bacteriol; 1998 Mar; 180(6):1411-7. PubMed ID: 9515907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides.
    Dubbs JM; Tabita FR
    J Biol Chem; 2003 May; 278(18):16443-50. PubMed ID: 12601011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1993 Sep; 175(18):5778-84. PubMed ID: 8376325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock.
    Wang W; Xiao S; Chao J; Chen Q; Qiu G; Liu X
    J Microbiol Biotechnol; 2008 Nov; 18(11):1747-54. PubMed ID: 19047816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus.
    van Keulen G; Ridder AN; Dijkhuizen L; Meijer WG
    J Bacteriol; 2003 Feb; 185(4):1245-52. PubMed ID: 12562794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus.
    Dubbs P; Dubbs JM; Tabita FR
    J Bacteriol; 2004 Dec; 186(23):8026-35. PubMed ID: 15547275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides.
    Xu HH; Tabita FR
    J Bacteriol; 1994 Dec; 176(23):7299-308. PubMed ID: 7961502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation.
    Shimizu R; Dempo Y; Nakayama Y; Nakamura S; Bamba T; Fukusaki E; Fukui T
    Sci Rep; 2015 Jul; 5():11617. PubMed ID: 26130086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus.
    van den Bergh ER; Dijkhuizen L; Meijer WG
    J Bacteriol; 1993 Oct; 175(19):6097-104. PubMed ID: 8407781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.