These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26152832)

  • 1. Preliminary investigation of differential tapelifting for sampling forensically relevant layered deposits.
    Verdon TJ; Mitchell RJ; van Oorschot RA
    Leg Med (Tokyo); 2015 Nov; 17(6):553-9. PubMed ID: 26152832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of tapelifting as a collection method for touch DNA.
    Verdon TJ; Mitchell RJ; van Oorschot RA
    Forensic Sci Int Genet; 2014 Jan; 8(1):179-86. PubMed ID: 24315606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swabs as DNA collection devices for sampling different biological materials from different substrates.
    Verdon TJ; Mitchell RJ; van Oorschot RA
    J Forensic Sci; 2014 Jul; 59(4):1080-9. PubMed ID: 24502761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the microbial wet-vacuum system (M-Vac®) for DNA sampling from rough, porous substrates, and its compatibility with fully automated platforms.
    Blackmore L; Hadley Cabral de Almada C; Poulsen F; Prasad E; Kotzander J; Paton K; Hitchcock C; Nadort A
    Forensic Sci Int; 2024 Aug; 361():112079. PubMed ID: 38850613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Touch DNA sampling with SceneSafe Fast™ minitapes.
    Stoop B; Defaux PM; Utz S; Zieger M
    Leg Med (Tokyo); 2017 Nov; 29():68-71. PubMed ID: 29102833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of contact force on forensic trace collection efficiency when sampling textiles with adhesive tape.
    Damsteeg-van Berkel S; Beemster F; Dankelman J; Loeve AJ
    Forensic Sci Int; 2019 May; 298():278-283. PubMed ID: 30925346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased recovery of touch DNA evidence using FTA paper compared to conventional collection methods.
    Kirgiz IA; Calloway C
    J Forensic Leg Med; 2017 Apr; 47():9-15. PubMed ID: 28171796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput DNA extraction of forensic adhesive tapes.
    Forsberg C; Jansson L; Ansell R; Hedman J
    Forensic Sci Int Genet; 2016 Sep; 24():158-163. PubMed ID: 27448236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace DNA Sampling Success from Evidence Items Commonly Encountered in Forensic Casework.
    Dziak R; Peneder A; Buetter A; Hageman C
    J Forensic Sci; 2018 May; 63(3):835-841. PubMed ID: 28921603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Touch DNA: impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study.
    Sessa F; Salerno M; Bertozzi G; Messina G; Ricci P; Ledda C; Rapisarda V; Cantatore S; Turillazzi E; Pomara C
    Sci Rep; 2019 Jul; 9(1):9542. PubMed ID: 31267029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive Biological Evidence Collection with Alternative Swabs and Adhesive Lifters.
    Plaza DT; Mealy JL; Lane JN; Parsons MN; Bathrick AS; Slack DP
    J Forensic Sci; 2016 Mar; 61(2):485-488. PubMed ID: 27404622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single source DNA profile recovery from single cells isolated from skin and fabric from touch DNA mixtures in mock physical assaults.
    Farash K; Hanson EK; Ballantyne J
    Sci Justice; 2018 May; 58(3):191-199. PubMed ID: 29685301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Trace DNA on Clothing: A Comparison of Mini-tape Lifting and Three Other Forensic Evidence Collection Techniques.
    Hess S; Haas C
    J Forensic Sci; 2017 Jan; 62(1):187-191. PubMed ID: 27864934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Getting blood from a stone": ultrasensitive forensic DNA profiling of microscopic bio-particles recovered from "touch DNA" evidence.
    Hanson EK; Ballantyne J
    Methods Mol Biol; 2013; 1039():3-17. PubMed ID: 24026682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.
    de Castro TC; Taylor MC; Kieser JA; Carr DJ; Duncan W
    Forensic Sci Int; 2015 May; 250():98-109. PubMed ID: 25828382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of cellular autofluorescence in touch samples by flow cytometry: implications for front end separation of trace mixture evidence.
    Katherine Philpott M; Stanciu CE; Kwon YJ; Bustamante EE; Greenspoon SA; Ehrhardt CJ
    Anal Bioanal Chem; 2017 Jul; 409(17):4167-4179. PubMed ID: 28516277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How changes to the substrate's physical characteristics can influence the deposition of touch and salivary deposits.
    Hughes DA; Szkuta B; Oorschot RAHV; Conlan XA
    Forensic Sci Int; 2023 Feb; 343():111546. PubMed ID: 36621057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility of polyester and cotton as swabbing substrates for the removal of cellular material from surfaces.
    Mulligan CM; Kaufman SR; Quarino L
    J Forensic Sci; 2011 Mar; 56(2):485-90. PubMed ID: 21342191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary and subsequent DNA transfer during criminal investigation.
    Fonneløp AE; Egeland T; Gill P
    Forensic Sci Int Genet; 2015 Jul; 17():155-162. PubMed ID: 26005954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of latent DNA.
    Kanokwongnuwut P; Kirkbride KP; Linacre A
    Forensic Sci Int Genet; 2018 Nov; 37():95-101. PubMed ID: 30103147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.