These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
3. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427 [TBL] [Abstract][Full Text] [Related]
4. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. Shen J; Yang C; Li X; Wang G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572 [TBL] [Abstract][Full Text] [Related]
5. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316 [TBL] [Abstract][Full Text] [Related]
7. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface. Kim HM; Hwang JY; Manthiram A; Sun YK ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268 [TBL] [Abstract][Full Text] [Related]
9. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors. Ko WY; Chen YF; Lu KM; Lin KJ Sci Rep; 2016 Jan; 6():18887. PubMed ID: 26726724 [TBL] [Abstract][Full Text] [Related]
10. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors. El-Gendy DM; Ghany NA; El Sherbini EE; Allam NK Sci Rep; 2017 Feb; 7():43104. PubMed ID: 28216668 [TBL] [Abstract][Full Text] [Related]
11. Coaxial fiber supercapacitor using all-carbon material electrodes. Le VT; Kim H; Ghosh A; Kim J; Chang J; Vu QA; Pham DT; Lee JH; Kim SW; Lee YH ACS Nano; 2013 Jul; 7(7):5940-7. PubMed ID: 23731060 [TBL] [Abstract][Full Text] [Related]
12. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. Karthika P; Rajalakshmi N; Dhathathreyan KS Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269 [TBL] [Abstract][Full Text] [Related]
13. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors. Su Y; Zhitomirsky I J Phys Chem B; 2013 Feb; 117(6):1563-70. PubMed ID: 22662969 [TBL] [Abstract][Full Text] [Related]
14. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659 [TBL] [Abstract][Full Text] [Related]
15. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230 [TBL] [Abstract][Full Text] [Related]
16. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors. Huang F; Lou F; Chen D ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. Raymundo-Piñero E; Cadek M; Wachtler M; Béguin F ChemSusChem; 2011 Jul; 4(7):943-9. PubMed ID: 21302364 [TBL] [Abstract][Full Text] [Related]
19. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. Zhang X; Shi W; Zhu J; Kharistal DJ; Zhao W; Lalia BS; Hng HH; Yan Q ACS Nano; 2011 Mar; 5(3):2013-9. PubMed ID: 21332174 [TBL] [Abstract][Full Text] [Related]
20. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte. Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]