These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26153688)

  • 21. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Printable thin film supercapacitors using single-walled carbon nanotubes.
    Kaempgen M; Chan CK; Ma J; Cui Y; Gruner G
    Nano Lett; 2009 May; 9(5):1872-6. PubMed ID: 19348455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inkjet Printing Transparent and Conductive MXene (Ti
    Wen D; Wang X; Liu L; Hu C; Sun C; Wu Y; Zhao Y; Zhang J; Liu X; Ying G
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17766-17780. PubMed ID: 33843188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.
    Kang YJ; Chun SJ; Lee SS; Kim BY; Kim JH; Chung H; Lee SY; Kim W
    ACS Nano; 2012 Jul; 6(7):6400-6. PubMed ID: 22717174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of SLS/MWCNTs/PANI capacitor electrodes in a physiological electrolyte and in serum.
    Ammam M; Fransaer J
    Chem Commun (Camb); 2012 Feb; 48(14):2036-8. PubMed ID: 22237451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites.
    Small WR; in het Panhuis M
    Small; 2007 Sep; 3(9):1500-3. PubMed ID: 17668430
    [No Abstract]   [Full Text] [Related]  

  • 29. Facile preparation of nanocellulose/multi-walled carbon nanotube/polyaniline composite aerogel electrodes with high area-specific capacitance for supercapacitors.
    Liu S; Chen Y; Dorsel PP; Wu C
    Int J Biol Macromol; 2023 May; 238():124158. PubMed ID: 36965562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors.
    Li B; Hu N; Su Y; Yang Z; Shao F; Li G; Zhang C; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46044-46053. PubMed ID: 31718126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte.
    Salunkhe RR; Young C; Tang J; Takei T; Ide Y; Kobayashi N; Yamauchi Y
    Chem Commun (Camb); 2016 Apr; 52(26):4764-7. PubMed ID: 26928244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.
    Singh MK; Kumar Y; Hashmi SA
    Nanotechnology; 2013 Nov; 24(46):465704. PubMed ID: 24157648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.
    Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH
    Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes.
    Swain SK; Pradhan AK; Sahu HS
    Carbohydr Polym; 2013 Apr; 94(1):663-8. PubMed ID: 23544588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors.
    Wang Y; Zhitomirsky I
    Langmuir; 2009 Sep; 25(17):9684-9. PubMed ID: 19449813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance.
    Shi K; Zhitomirsky I
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13161-70. PubMed ID: 24255939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors.
    Jha MK; Hata K; Subramaniam C
    ACS Appl Mater Interfaces; 2019 May; 11(20):18285-18294. PubMed ID: 31034194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.
    Yu M; Zhang Y; Zeng Y; Balogun MS; Mai K; Zhang Z; Lu X; Tong Y
    Adv Mater; 2014 Jul; 26(27):4724-9. PubMed ID: 24838595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.