These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26153697)

  • 21. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model.
    Saxton MJ
    Biophys J; 2007 Feb; 92(4):1178-91. PubMed ID: 17142285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy.
    Reitan NK; Juthajan A; Lindmo T; de Lange Davies C
    J Biomed Opt; 2008; 13(5):054040. PubMed ID: 19021420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy.
    Stortz M; Angiolini J; Mocskos E; Wolosiuk A; Pecci A; Levi V
    Methods; 2018 May; 140-141():10-22. PubMed ID: 29253641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TCERG1 inhibits C/EBPα through a mechanism that does not involve sequestration of C/EBPα at pericentromeric heterochromatin.
    Moazed B; Banman SL; Wilkinson GA; Roesler WJ
    J Cell Biochem; 2011 Sep; 112(9):2317-26. PubMed ID: 21503969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the C/EBPα C-terminal tail residues involved in the protein interaction with GABP and their potency in myeloid differentiation of K562 cells.
    Shimokawa T; Nunomura S; Fujisawa D; Ra C
    Biochim Biophys Acta; 2013 Nov; 1829(11):1207-17. PubMed ID: 24076158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes.
    Kang M; Day CA; Kenworthy AK
    Traffic; 2019 Nov; 20(11):867-880. PubMed ID: 31452286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA.
    Bracken C; Carr PA; Cavanagh J; Palmer AG
    J Mol Biol; 1999 Feb; 285(5):2133-46. PubMed ID: 9925790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying transport behavior of single-molecule trajectories.
    Regner BM; Tartakovsky DM; Sejnowski TJ
    Biophys J; 2014 Nov; 107(10):2345-51. PubMed ID: 25418303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple diffusion mechanisms due to nanostructuring in crowded environments.
    Sanabria H; Kubota Y; Waxham MN
    Biophys J; 2007 Jan; 92(1):313-22. PubMed ID: 17040979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region.
    Haas NB; Cantwell CA; Johnson PF; Burch JB
    Mol Cell Biol; 1995 Apr; 15(4):1923-32. PubMed ID: 7891686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging the localized protein interactions between Pit-1 and the CCAAT/enhancer binding protein alpha in the living pituitary cell nucleus.
    Day RN; Voss TC; Enwright JF; Booker CF; Periasamy A; Schaufele F
    Mol Endocrinol; 2003 Mar; 17(3):333-45. PubMed ID: 12554785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity.
    Xiang L; Chen K; Yan R; Li W; Xu K
    Nat Methods; 2020 May; 17(5):524-530. PubMed ID: 32203387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring Mobility in Chromatin by Intensity-Sorted FCS.
    Di Bona M; Mancini MA; Mazza D; Vicidomini G; Diaspro A; Lanzanò L
    Biophys J; 2019 Mar; 116(6):987-999. PubMed ID: 30819566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
    Vicidomini G; Ta H; Honigmann A; Mueller V; Clausen MP; Waithe D; Galiani S; Sezgin E; Diaspro A; Hell SW; Eggeling C
    Nano Lett; 2015 Sep; 15(9):5912-8. PubMed ID: 26235350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CCAAT/enhancer binding protein alpha binds to the Epstein-Barr virus (EBV) ZTA protein through oligomeric interactions and contributes to cooperative transcriptional activation of the ZTA promoter through direct binding to the ZII and ZIIIB motifs during induction of the EBV lytic cycle.
    Wu FY; Wang SE; Chen H; Wang L; Hayward SD; Hayward GS
    J Virol; 2004 May; 78(9):4847-65. PubMed ID: 15078966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.
    Day RN
    Methods; 2014 Mar; 66(2):200-7. PubMed ID: 23806643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformation of CCAAT/enhancer-binding protein alpha dimers varies with intranuclear location in living cells.
    Schaufele F; Wang X; Liu X; Day RN
    J Biol Chem; 2003 Mar; 278(12):10578-87. PubMed ID: 12531886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes.
    Schwille P; Korlach J; Webb WW
    Cytometry; 1999 Jul; 36(3):176-82. PubMed ID: 10404965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CCAAT/enhancer binding protein alpha assembles essential cooperating factors in common subnuclear domains.
    Schaufele F; Enwright JF; Wang X; Teoh C; Srihari R; Erickson R; MacDougald OA; Day RN
    Mol Endocrinol; 2001 Oct; 15(10):1665-76. PubMed ID: 11579200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.