These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26153700)

  • 21. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia.
    Vale RD; Toyoshima YY
    Cell; 1988 Feb; 52(3):459-69. PubMed ID: 2964278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of inner dynein arm structure and possible function in ciliary and flagellar axonemes.
    Taylor HC; Satir P; Holwill ME
    Cell Motil Cytoskeleton; 1999; 43(2):167-77. PubMed ID: 10379841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flagellar and ciliary beating: the proven and the possible.
    Lindemann CB; Lesich KA
    J Cell Sci; 2010 Feb; 123(Pt 4):519-28. PubMed ID: 20145000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cation-induced attachment of ciliary dynein cross-bridges.
    Warner FD
    J Cell Biol; 1978 Jun; 77(3):R19-26. PubMed ID: 150425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation.
    Wirschell M; Hendrickson T; Sale WS
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of gliding movement by calcium in doublet microtubules on Tetrahymena ciliary dyneins in vitro.
    Mori M; Miki-Noumura T
    Exp Cell Res; 1992 Dec; 203(2):483-7. PubMed ID: 1459207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conserved function for embryonic nodal cilia.
    Essner JJ; Vogan KJ; Wagner MK; Tabin CJ; Yost HJ; Brueckner M
    Nature; 2002 Jul; 418(6893):37-8. PubMed ID: 12097899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blind quantitative electron microscopy of cilia from patients with primary ciliary dyskinesia and from normal subjects.
    Nielsen MH; Pedersen M; Christensen B; Mygind N
    Eur J Respir Dis Suppl; 1983; 127():19-30. PubMed ID: 6225659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading.
    Hu T; Bayly PV
    Cytoskeleton (Hoboken); 2018 May; 75(5):185-200. PubMed ID: 29316355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of axonemal components in ciliary motility.
    Satir P
    Comp Biochem Physiol A Comp Physiol; 1989; 94(2):351-7. PubMed ID: 2573479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of unstable modes distinguishes mathematical models of flagellar motion.
    Bayly PV; Wilson KS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly.
    Yamaguchi H; Oda T; Kikkawa M; Takeda H
    Elife; 2018 May; 7():. PubMed ID: 29741156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetry of cilia and of mice and men.
    Afzelius BA
    Int J Dev Biol; 1999 Jul; 43(4):283-6. PubMed ID: 10470644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biophysical aspects and modelling of ciliary motility.
    Holwill ME; Foster GF; Hamasaki T; Satir P
    Cell Motil Cytoskeleton; 1995; 32(2):114-20. PubMed ID: 8681391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric Clutch model version 3: the role of the inner and outer arm dyneins in the ciliary beat.
    Lindemann CB
    Cell Motil Cytoskeleton; 2002 Aug; 52(4):242-54. PubMed ID: 12112138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane-associated dynein-like ATPase.
    Dentler WL; Pratt MM; Stephens RE
    J Cell Biol; 1980 Feb; 84(2):381-403. PubMed ID: 6445910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Mechanics of Dynein Motors.
    Canty JT; Tan R; Kusakci E; Fernandes J; Yildiz A
    Annu Rev Biophys; 2021 May; 50():549-574. PubMed ID: 33957056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of ciliary beating by an excitable dynein model: oscillations, quiescence and mechano-sensitivity.
    Murase M
    J Theor Biol; 1990 Sep; 146(2):209-31. PubMed ID: 2147971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.