BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26153713)

  • 1. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion.
    Erickson AM; Henry BI; Murray JM; Klasse PJ; Angstmann CN
    Biophys J; 2015 Jul; 109(1):164-72. PubMed ID: 26153713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A.
    Chen A; McKinley SA; Shi F; Wang S; Mucha PJ; Harit D; Forest MG; Lai SK
    PLoS One; 2015; 10(7):e0131351. PubMed ID: 26132216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Model for the Transient Subdiffusive Behavior of Particles in Mucus.
    Ernst M; John T; Guenther M; Wagner C; Schaefer UF; Lehr CM
    Biophys J; 2017 Jan; 112(1):172-179. PubMed ID: 28076809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus.
    Lai SK; Hida K; Shukair S; Wang YY; Figueiredo A; Cone R; Hope TJ; Hanes J
    J Virol; 2009 Nov; 83(21):11196-200. PubMed ID: 19692470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Influence of Semen-Derived Enhancer of Virus Infection on the Interaction of HIV-1 with Female Reproductive Tract Tissues.
    Allen SA; Carias AM; Anderson MR; Okocha EA; Benning L; McRaven MD; Kelley ZL; Lurain J; Veazey RS; Hope TJ
    J Virol; 2015 May; 89(10):5569-80. PubMed ID: 25740984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV binding, penetration, and primary infection in human cervicovaginal tissue.
    Maher D; Wu X; Schacker T; Horbul J; Southern P
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11504-9. PubMed ID: 16061810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody-Mediated Immobilization of Virions in Mucus.
    Jensen MA; Wang YY; Lai SK; Forest MG; McKinley SA
    Bull Math Biol; 2019 Oct; 81(10):4069-4099. PubMed ID: 31468263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movements of HIV-virions in human cervical mucus.
    Boukari H; Brichacek B; Stratton P; Mahoney SF; Lifson JD; Margolis L; Nossal R
    Biomacromolecules; 2009 Sep; 10(9):2482-8. PubMed ID: 19711976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
    Lai SK; O'Hanlon DE; Harrold S; Man ST; Wang YY; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1482-7. PubMed ID: 17244708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucus models to evaluate nanomedicines for diffusion.
    Groo AC; Lagarce F
    Drug Discov Today; 2014 Aug; 19(8):1097-108. PubMed ID: 24491319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters.
    Barr JJ; Auro R; Sam-Soon N; Kassegne S; Peters G; Bonilla N; Hatay M; Mourtada S; Bailey B; Youle M; Felts B; Baljon A; Nulton J; Salamon P; Rohwer F
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13675-80. PubMed ID: 26483471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient antibody-mucin interactions produce a dynamic molecular shield against viral invasion.
    Chen A; McKinley SA; Wang S; Shi F; Mucha PJ; Forest MG; Lai SK
    Biophys J; 2014 May; 106(9):2028-36. PubMed ID: 24806935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of microbicide nanoparticles with a simulated vaginal fluid.
    das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B
    Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement.
    Shukair SA; Allen SA; Cianci GC; Stieh DJ; Anderson MR; Baig SM; Gioia CJ; Spongberg EJ; Kauffman SM; McRaven MD; Lakougna HY; Hammond C; Kiser PF; Hope TJ
    Mucosal Immunol; 2013 Mar; 6(2):427-34. PubMed ID: 22990624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus.
    Laffleur F; Hintzen F; Shahnaz G; Rahmat D; Leithner K; Bernkop-Schnürch A
    Nanomedicine (Lond); 2014 Mar; 9(3):387-96. PubMed ID: 23611618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of the gastric gel mucus layer: application to the measured pH gradient.
    Livingston EH; Engel E
    J Clin Gastroenterol; 1995; 21 Suppl 1():S120-4. PubMed ID: 8775003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying diffusion in mucosal systems by pulsed-gradient spin-echo NMR.
    Occhipinti P; Griffiths PC
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1570-82. PubMed ID: 18940211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.