These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2615395)

  • 1. Red cell membrane crenation: a macromodel of the echinocyte I.
    Aldana DH; Brailsford JD; Bull BS
    J Theor Biol; 1989 Sep; 140(2):185-92. PubMed ID: 2615395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The ATP depletion process of human erythrocytes studied by freeze fracturing].
    Kirillov VA; Votiakov VI; Konev SV
    Tsitologiia; 1987 Nov; 29(11):1245-50. PubMed ID: 3438930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting shape and spontaneous membrane curvature of red blood cells.
    Pozrikidis C
    Math Med Biol; 2005 Mar; 22(1):34-52. PubMed ID: 15716299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bending resistance and chemically induced moments in membrane bilayers.
    Evans EA
    Biophys J; 1974 Dec; 14(12):923-31. PubMed ID: 4429770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal-mode analysis of lateral diffusion on a bounded membrane surface.
    Koppel DE
    Biophys J; 1985 Mar; 47(3):337-47. PubMed ID: 3978205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behaviour of amphiphilic lipids to penetrate into membrane of intact human erythrocytes and to induce change in the cell shape.
    Fujii T; Tamura A
    Biomed Biochim Acta; 1983; 42(11-12):S81-5. PubMed ID: 6675720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stress-free shape of the red blood cell membrane.
    Fischer TM; Haest CW; Stöhr-Liesen M; Schmid-Schönbein H; Skalak R
    Biophys J; 1981 Jun; 34(3):409-22. PubMed ID: 7248469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts.
    Liu SC; Derick LH; Duquette MA; Palek J
    Eur J Cell Biol; 1989 Aug; 49(2):358-65. PubMed ID: 2776779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.
    Ha J; Park FC; Dupont PE
    IEEE Trans Robot; 2017 Feb; 33(1):22-37. PubMed ID: 28966566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
    Lim H W G; Wortis M; Mukhopadhyay R
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16766-9. PubMed ID: 12471152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM; Worthy PR; Evans EA
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Erytrocyte membrane change due to the chemical treatment studied with atomic force microscopy].
    Targosz-Korecka M; Sułowicz W; Czuba P; Szymoński M; Miklaszewska M; Pietrzyk JA; Rumian R; Krawentek L
    Przegl Lek; 2009; 66(12):1031-5. PubMed ID: 20514900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Membrane organization in the plane of the membrane and cell shape. Biological consequences of the theory].
    Markin VS
    Biofizika; 1981; 26(1):158-67. PubMed ID: 7225445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelasticity of red blood cell membrane.
    Waugh R; Evans EA
    Biophys J; 1979 Apr; 26(1):115-31. PubMed ID: 262408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence for a membrane potential-dependent shape transformation of the human erythrocyte membrane.
    Müller P; Herrmann A; Glaser R
    Biosci Rep; 1986 Nov; 6(11):999-1006. PubMed ID: 3580524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis.
    Hochmuth RM; Evans EA
    Biophys J; 1982 Jul; 39(1):71-81. PubMed ID: 7104453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation control of erythrocyte membrane shape: Ca++ reversal of discocyte to echinocyte transition caused by Mg++ and other cations.
    Vaughan L; Penniston JT
    Biochem Biophys Res Commun; 1976 Nov; 73(1):200-5. PubMed ID: 999699
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.