BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26154028)

  • 1. Crystal Structures of a Hyperthermophilic Archaeal Homoserine Dehydrogenase Suggest a Novel Cofactor Binding Mode for Oxidoreductases.
    Hayashi J; Inoue S; Kim K; Yoneda K; Kawarabayasi Y; Ohshima T; Sakuraba H
    Sci Rep; 2015 Jul; 5():11674. PubMed ID: 26154028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases.
    DeLaBarre B; Thompson PR; Wright GD; Berghuis AM
    Nat Struct Biol; 2000 Mar; 7(3):238-44. PubMed ID: 10700284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
    Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A
    J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD
    Tang W; Dong X; Meng J; Feng Y; Xie M; Xu H; Song P
    Protein Expr Purif; 2021 Oct; 186():105909. PubMed ID: 34022392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.
    Hayashi J; Yamamoto K; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2016 Dec; 84(12):1786-1796. PubMed ID: 27616573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the catalytic mechanism of homoserine dehydrogenase.
    Navratna V; Reddy G; Gopal B
    Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1216-25. PubMed ID: 25945586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases.
    Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW
    J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of homoserine dehydrogenase complexed with l-homoserine and NADPH in a closed form.
    Akai S; Ikushiro H; Sawai T; Yano T; Kamiya N; Miyahara I
    J Biochem; 2019 Feb; 165(2):185-195. PubMed ID: 30423116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD.
    Falini G; Fermani S; Ripamonti A; Sabatino P; Sparla F; Pupillo P; Trost P
    Biochemistry; 2003 Apr; 42(16):4631-9. PubMed ID: 12705826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes in the catalytic region are responsible for heat-induced activation of hyperthermophilic homoserine dehydrogenase.
    Kubota T; Kurihara E; Watanabe K; Ogata K; Kaneko R; Goto M; Ohshima T; Yoshimune K
    Commun Biol; 2022 Jul; 5(1):704. PubMed ID: 35835834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of homoserine dehydrogenase by formation of a cysteine-NAD covalent complex.
    Ogata K; Yajima Y; Nakamura S; Kaneko R; Goto M; Ohshima T; Yoshimune K
    Sci Rep; 2018 Apr; 8(1):5749. PubMed ID: 29636528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis.
    Talfournier F; Colloc'h N; Mornon JP; Branlant G
    Eur J Biochem; 1999 Oct; 265(1):93-104. PubMed ID: 10491162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii.
    Korkhin Y; Kalb(Gilboa) AJ; Peretz M; Bogin O; Burstein Y; Frolow F
    J Mol Biol; 1998 May; 278(5):967-81. PubMed ID: 9836873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.
    Lokanath NK; Ohshima N; Takio K; Shiromizu I; Kuroishi C; Okazaki N; Kuramitsu S; Yokoyama S; Miyano M; Kunishima N
    J Mol Biol; 2005 Sep; 352(4):905-17. PubMed ID: 16126223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase.
    Rodríguez-Zavala JS
    Protein Sci; 2008 Mar; 17(3):563-70. PubMed ID: 18218709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Based Engineering of an Artificially Generated NADP
    Hayashi J; Seto T; Akita H; Watanabe M; Hoshino T; Yoneda K; Ohshima T; Sakuraba H
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first crystal structure of NAD-dependent 3-dehydro-2-deoxy-D-gluconate dehydrogenase from Thermus thermophilus HB8.
    Pampa KJ; Lokanath NK; Kunishima N; Rai RV
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):994-1004. PubMed ID: 24699644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.