These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26154063)

  • 1. Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity.
    Takahashi H; Akiyoshi K; Kuroda K
    Chem Commun (Camb); 2015 Aug; 51(63):12597-600. PubMed ID: 26154063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold.
    Hashimoto Y; Mukai SA; Sawada S; Sasaki Y; Akiyoshi K
    Biomaterials; 2015 Jan; 37():107-15. PubMed ID: 25453324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery.
    Xiong MH; Bao Y; Yang XZ; Wang YC; Sun B; Wang J
    J Am Chem Soc; 2012 Mar; 134(9):4355-62. PubMed ID: 22304702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycol chitosan-based nanogel as a potential targetable carrier for siRNA.
    Pereira P; Morgado D; Crepet A; David L; Gama FM
    Macromol Biosci; 2013 Oct; 13(10):1369-78. PubMed ID: 23996912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell.
    Lemieux P; Vinogradov SV; Gebhart CL; Guérin N; Paradis G; Nguyen HK; Ochietti B; Suzdaltseva YG; Bartakova EV; Bronich TK; St-Pierre Y; Alakhov VY; Kabanov AV
    J Drug Target; 2000; 8(2):91-105. PubMed ID: 10852341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanogel star polymer architectures: a nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery.
    Lee VY; Havenstrite K; Tjio M; McNeil M; Blau HM; Miller RD; Sly J
    Adv Mater; 2011 Oct; 23(39):4509-15. PubMed ID: 21901765
    [No Abstract]   [Full Text] [Related]  

  • 8. Polysaccharide nanogel gene delivery system with endosome-escaping function: Co-delivery of plasmid DNA and phospholipase A2.
    Toita S; Sawada S; Akiyoshi K
    J Control Release; 2011 Oct; 155(1):54-9. PubMed ID: 21185892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic star-block copolymers and supramolecular transformation of nanogel-like micelles to nanovesicles.
    Zhu JL; Liu KL; Zhang Z; Zhang XZ; Li J
    Chem Commun (Camb); 2011 Dec; 47(48):12849-51. PubMed ID: 22045432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones.
    Hashimoto Y; Mukai SA; Sasaki Y; Akiyoshi K
    Adv Healthc Mater; 2018 Dec; 7(23):e1800729. PubMed ID: 30221496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release.
    Chiang WH; Ho VT; Huang WC; Huang YF; Chern CS; Chiu HC
    Langmuir; 2012 Oct; 28(42):15056-64. PubMed ID: 23036055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Charge Density and Hydrophobicity on the Biocidal Properties of Self-Protonable Polymeric Materials.
    Matrella S; Vitiello C; Mella M; Vigliotta G; Izzo L
    Macromol Biosci; 2015 Jul; 15(7):927-40. PubMed ID: 25781420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers.
    Carr AC; Piunova VA; Maarof H; Rice JE; Swope WC
    J Phys Chem B; 2018 May; 122(21):5356-5367. PubMed ID: 29385796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities.
    Kabanov AV; Vinogradov SV
    Angew Chem Int Ed Engl; 2009; 48(30):5418-29. PubMed ID: 19562807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Switched Release from a Nanogel-in-Microfiber Device.
    Li L; Yang G; Zhou G; Wang Y; Zheng X; Zhou S
    Adv Healthc Mater; 2015 Aug; 4(11):1658-63. PubMed ID: 25998801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular assembled nanogel made of mannan.
    Ferreira SA; Pereira P; Sampaio P; Coutinho PJ; Gama FM
    J Colloid Interface Sci; 2011 Sep; 361(1):97-108. PubMed ID: 21658701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled micelles of novel graft amphiphilic copolymers for drug controlled release.
    Xun W; Wang HY; Li ZY; Cheng SX; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2011 Jun; 85(1):86-91. PubMed ID: 21087841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery.
    Ghaeini-Hesaroeiye S; Boddohi S; Vasheghani-Farahani E
    Int J Biol Macromol; 2020 Jan; 143():297-304. PubMed ID: 31812739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic branched polymers as antimicrobial agents.
    Pasquier N; Keul H; Heine E; Moeller M; Angelov B; Linser S; Willumeit R
    Macromol Biosci; 2008 Oct; 8(10):903-15. PubMed ID: 18785211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone.
    Nomura Y; Sasaki Y; Takagi M; Narita T; Aoyama Y; Akiyoshi K
    Biomacromolecules; 2005; 6(1):447-52. PubMed ID: 15638551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.