BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26154110)

  • 1. Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution.
    Sun M; Zhang G; Qin Y; Cao M; Liu Y; Li J; Qu J; Liu H
    Environ Sci Technol; 2015 Aug; 49(15):9289-97. PubMed ID: 26154110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions.
    Wang Z; Bush RT; Sullivan LA; Liu J
    Environ Sci Technol; 2013 Jun; 47(12):6486-92. PubMed ID: 23692180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media-A review.
    Fu Y; Wang L; Peng W; Fan Q; Li Q; Dong Y; Liu Y; Boczkaj G; Wang Z
    J Hazard Mater; 2021 Sep; 417():126041. PubMed ID: 34229381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coadsorption and subsequent redox conversion behaviors of As(III) and Cr(VI) on Al-containing ferrihydrite.
    Ding Z; Fu F; Dionysiou DD; Tang B
    Environ Pollut; 2018 Apr; 235():660-669. PubMed ID: 29331898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar.
    Dong X; Ma LQ; Gress J; Harris W; Li Y
    J Hazard Mater; 2014 Feb; 267():62-70. PubMed ID: 24418493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS.
    Peng H; Zhang N; He M; Chen B; Hu B
    Talanta; 2015 Jan; 131():266-72. PubMed ID: 25281102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
    Mangiameli MF; González JC; Bellú S; Bertoni F; Sala LF
    Dalton Trans; 2014 Jun; 43(24):9242-54. PubMed ID: 24816781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of Chromium(III) triglycine, tetraglycine and pentaglycine complexes.
    Headlam HA; Lay PA
    J Inorg Biochem; 2016 Sep; 162():227-237. PubMed ID: 27365280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on the mechanism of oxidation of D-galacturonic acid by hypervalent chromium.
    Mangiameli MF; González JC; García SI; Frascaroli MI; Van Doorslaer S; Salas Peregrin JM; Sala LF
    Dalton Trans; 2011 Jul; 40(26):7033-45. PubMed ID: 21629965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe
    Zhong D; Zhang Y; Wang L; Chen J; Jiang Y; Tsang DCW; Zhao Z; Ren S; Liu Z; Crittenden JC
    Environ Pollut; 2018 Dec; 243(Pt B):1302-1309. PubMed ID: 30268980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma-induced reduction of chromium(VI) in an aqueous solution.
    Wang L; Jiang X
    Environ Sci Technol; 2008 Nov; 42(22):8492-7. PubMed ID: 19068837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes.
    Liu YX; Yuan DX; Yan JM; Li QL; Ouyang T
    J Hazard Mater; 2011 Feb; 186(1):473-80. PubMed ID: 21122989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexavalent chromium removal mechanism using conducting polymers.
    Krishnani KK; Srinives S; Mohapatra BC; Boddu VM; Hao J; Meng X; Mulchandani A
    J Hazard Mater; 2013 May; 252-253():99-106. PubMed ID: 23507365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro.
    Stearns DM; Kennedy LJ; Courtney KD; Giangrande PH; Phieffer LS; Wetterhahn KE
    Biochemistry; 1995 Jan; 34(3):910-9. PubMed ID: 7827049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cr(VI) from wastewaters in a tubular electrochemical reactor.
    Rodriguez MG; Martinez SA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(12):2215-25. PubMed ID: 16319019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.
    Bokare AD; Choi W
    Environ Sci Technol; 2011 Nov; 45(21):9332-8. PubMed ID: 21988604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation.
    Zhang Y; Yang J; Zhong L; Liu L
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23791-23798. PubMed ID: 29876853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One stone two birds: novel carbon nanotube/Bi
    Zhang X; Shi D; Fan J
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23309-23320. PubMed ID: 28836094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.