These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26154449)

  • 1. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.
    Wang Y; Momohara A; Wang L; Lebreton-Anberrée J; Zhou Z
    PLoS One; 2015; 10(7):e0130941. PubMed ID: 26154449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems.
    Kürschner WM; Kvacek Z; Dilcher DL
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):449-53. PubMed ID: 18174330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2.
    Hu JJ; Xing YW; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2019 Jul; 123(7):1147-1158. PubMed ID: 30861064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Miocene CO
    Londoño L; Royer DL; Jaramillo C; Escobar J; Foster DA; Cárdenas-Rozo AL; Wood A
    Am J Bot; 2018 Nov; 105(11):1929-1937. PubMed ID: 30418663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha.
    Bai YJ; Chen LQ; Ranhotra PS; Wang Q; Wang YF; Li CS
    Glob Chang Biol; 2015 Feb; 21(2):874-81. PubMed ID: 24990109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation.
    Quirk J; McDowell NG; Leake JR; Hudson PJ; Beerling DJ
    Am J Bot; 2013 Mar; 100(3):582-91. PubMed ID: 23425559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary.
    Royer DL; Wing SL; Beerling DJ; Jolley DW; Koch PL; Hickey LJ; Berner RA
    Science; 2001 Jun; 292(5525):2310-3. PubMed ID: 11423657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric CO
    Hare VJ; Loftus E; Jeffrey A; Ramsey CB
    Nat Commun; 2018 Jan; 9(1):252. PubMed ID: 29343713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for atmospheric CO2 in preindustrial climate forcing.
    van Hoof TB; Wagner-Cremer F; Kürschner WM; Visscher H
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15815-8. PubMed ID: 18838689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal density in Pinus sylvestris as an indicator of temperature rather than CO
    Marek S; Tomaszewski D; Żytkowiak R; Jasińska A; Zadworny M; Boratyńska K; Dering M; Danusevičius D; Oleksyn J; Wyka TP
    Plant Cell Environ; 2022 Jan; 45(1):121-132. PubMed ID: 34748220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late Miocene threshold response of marine algae to carbon dioxide limitation.
    Bolton CT; Stoll HM
    Nature; 2013 Aug; 500(7464):558-62. PubMed ID: 23985873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimates of late Early Cretaceous atmospheric CO
    Zhang X; Royer DL; Shi G; Ichinnorov N; Herendeen PS; Crane PR; Herrera F
    Am J Bot; 2024 Jul; 111(7):e16376. PubMed ID: 39020509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
    Franks PJ; Beerling DJ
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10343-7. PubMed ID: 19506250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.