BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26154513)

  • 1. 'My Virtual Dream': Collective Neurofeedback in an Immersive Art Environment.
    Kovacevic N; Ritter P; Tays W; Moreno S; McIntosh AR
    PLoS One; 2015; 10(7):e0130129. PubMed ID: 26154513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an online EEG based neurofeedback game for enhancing attention and memory.
    Thomas KP; Vinod AP; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():433-6. PubMed ID: 24109716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.
    Huster RJ; Mokom ZN; Enriquez-Geppert S; Herrmann CS
    Int J Psychophysiol; 2014 Jan; 91(1):36-45. PubMed ID: 24012908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.
    Bauer R; Fels M; Royter V; Raco V; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3156-3164. PubMed ID: 27474965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison between BCI Simulation and Neurofeedback for Forward/Backward Navigation in Virtual Reality.
    Alchalabi B; Faubert J
    Comput Intell Neurosci; 2019; 2019():2503431. PubMed ID: 31687005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Home used, patient self-managed, brain-computer interface for the management of central neuropathic pain post spinal cord injury: usability study.
    Al-Taleb MKH; Purcell M; Fraser M; Petric-Gray N; Vuckovic A
    J Neuroeng Rehabil; 2019 Oct; 16(1):128. PubMed ID: 31666096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.
    Sorger B; Kamp T; Weiskopf N; Peters JC; Goebel R
    Neuroscience; 2018 May; 378():71-88. PubMed ID: 27659118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.
    Gomez-Pilar J; Corralejo R; Nicolas-Alonso LF; Álvarez D; Hornero R
    Med Biol Eng Comput; 2016 Nov; 54(11):1655-1666. PubMed ID: 26906278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of goal-oriented task design on neurofeedback learning for brain-computer interface control.
    McWhinney SR; Tremblay A; Boe SG; Bardouille T
    Med Biol Eng Comput; 2018 Feb; 56(2):201-210. PubMed ID: 28687962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical background, applications and prospects.
    Jeunet C; Glize B; McGonigal A; Batail JM; Micoulaud-Franchi JA
    Neurophysiol Clin; 2019 Apr; 49(2):125-136. PubMed ID: 30414824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution.
    Lührs M; Riemenschneider B; Eck J; Andonegui AB; Poser BA; Heinecke A; Krause F; Esposito F; Sorger B; Hennig J; Goebel R
    Neuroimage; 2019 Jul; 194():228-243. PubMed ID: 30910728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Brain Activity in hMT+/V5 at Three Response Levels Using fMRI-Based Neurofeedback/BCI.
    Sousa T; Direito B; Lima J; Ferreira C; Nunes U; Castelo-Branco M
    PLoS One; 2016; 11(5):e0155961. PubMed ID: 27214131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Different Visual Feedbacks in User Training on Motor Imagery Control in BCI.
    Zapała D; Francuz P; Zapała E; Kopiś N; Wierzgała P; Augustynowicz P; Majkowski A; Kołodziej M
    Appl Psychophysiol Biofeedback; 2018 Mar; 43(1):23-35. PubMed ID: 29075937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Experiential Learning-Based Approach to Neurofeedback Visualisation in Serious Games.
    Murdoch R
    Adv Exp Med Biol; 2019; 1156():97-109. PubMed ID: 31338780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.
    Zotev V; Phillips R; Yuan H; Misaki M; Bodurka J
    Neuroimage; 2014 Jan; 85 Pt 3():985-95. PubMed ID: 23668969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
    Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y
    Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.