These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
603 related articles for article (PubMed ID: 26154565)
1. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability. Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Performance and Storage Mechanism of Ag Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150 [TBL] [Abstract][Full Text] [Related]
3. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries. Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851 [TBL] [Abstract][Full Text] [Related]
4. Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Wang X; Huang Y; Jia D; Pang WK; Guo Z; Du Y; Tang X; Cao Y Inorg Chem; 2015 Dec; 54(24):11799-806. PubMed ID: 26650604 [TBL] [Abstract][Full Text] [Related]
5. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581 [TBL] [Abstract][Full Text] [Related]
6. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries. Ma N; Jiang XY; Zhang L; Wang XS; Cao YL; Zhang XZ Small; 2018 Apr; 14(14):e1703680. PubMed ID: 29488317 [TBL] [Abstract][Full Text] [Related]
7. Cu3 V2 O8 Nanoparticles as Intercalation-Type Anode Material for Lithium-Ion Batteries. Li M; Gao Y; Chen N; Meng X; Wang C; Zhang Y; Zhang D; Wei Y; Du F; Chen G Chemistry; 2016 Aug; 22(32):11405-12. PubMed ID: 27356500 [TBL] [Abstract][Full Text] [Related]
8. Intercalation anode material for lithium ion battery based on molybdenum dioxide. Sen UK; Shaligram A; Mitra S ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the Na Intercalation Mechanism into Nanosized V2O5/C Composite Cathode Material for Na-Ion Batteries. Ali G; Lee JH; Oh SH; Cho BW; Nam KW; Chung KY ACS Appl Mater Interfaces; 2016 Mar; 8(9):6032-9. PubMed ID: 26889957 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Properties and Sodium-Storage Mechanism of Ag2 Mo2 O7 as the Anode Material for Sodium-Ion Batteries. Chen N; Gao Y; Zhang M; Meng X; Wang C; Wei Y; Du F; Chen G Chemistry; 2016 May; 22(21):7248-54. PubMed ID: 27061105 [TBL] [Abstract][Full Text] [Related]
11. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries. Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220 [TBL] [Abstract][Full Text] [Related]
12. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature. Deng C; Lau ML; Barkholtz HM; Xu H; Parrish R; Xu MO; Xu T; Liu Y; Wang H; Connell JG; Smith KA; Xiong H Nanoscale; 2017 Aug; 9(30):10757-10763. PubMed ID: 28715023 [TBL] [Abstract][Full Text] [Related]
13. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries. Liu X; Yang J; Hou W; Wang J; Nuli Y ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572 [TBL] [Abstract][Full Text] [Related]
14. VOCl as a Cathode for Rechargeable Chloride Ion Batteries. Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132 [TBL] [Abstract][Full Text] [Related]
15. Ultrathin Zn2(OH)3VO3 Nanosheets: First Synthesis, Excellent Lithium-Storage Properties, and Investigation of Electrochemical Mechanism. Yang G; Wu M; Wang C ACS Appl Mater Interfaces; 2016 Sep; 8(36):23746-54. PubMed ID: 27560959 [TBL] [Abstract][Full Text] [Related]
16. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
17. Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries. Wang S; Tu J; Yuan Y; Ma R; Jiao S Phys Chem Chem Phys; 2016 Jan; 18(4):3204-13. PubMed ID: 26744041 [TBL] [Abstract][Full Text] [Related]
18. Exfoliated Graphene Oxide/MoO2 Composites as Anode Materials in Lithium-Ion Batteries: An Insight into Intercalation of Li and Conversion Mechanism of MoO2. Petnikota S; Teo KW; Chen L; Sim A; Marka SK; Reddy MV; Srikanth VV; Adams S; Chowdari BV ACS Appl Mater Interfaces; 2016 May; 8(17):10884-96. PubMed ID: 27057928 [TBL] [Abstract][Full Text] [Related]
19. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
20. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability. Ma F; Yuan A; Xu J; Hu P ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]