These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
866 related articles for article (PubMed ID: 26154585)
1. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Jhong CH; Riyaphan J; Lin SH; Chia YC; Weng CF Biofactors; 2015; 41(4):242-51. PubMed ID: 26154585 [TBL] [Abstract][Full Text] [Related]
2. Hypoglycemic Efficacy of Docking Selected Natural Compounds against α-Glucosidase and α-Amylase. Riyaphan J; Jhong CH; Lin SR; Chang CH; Tsai MJ; Lee DN; Sung PJ; Leong MK; Weng CF Molecules; 2018 Sep; 23(9):. PubMed ID: 30189596 [TBL] [Abstract][Full Text] [Related]
3. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of α-glucosidase and α-amylase by herbal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays. Tolmie M; Bester MJ; Apostolides Z J Diabetes; 2021 Oct; 13(10):779-791. PubMed ID: 33550683 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective. Patil SM; Martiz RM; Ramu R; Shirahatti PS; Prakash A; Kumar BRP; Kumar N J Biomol Struct Dyn; 2022; 40(23):12491-12505. PubMed ID: 34488558 [TBL] [Abstract][Full Text] [Related]
6. Osman W; Ismail EMOA; Shantier SW; Mohammed MS; Mothana RA; Muddathir A; Khalid HS J Recept Signal Transduct Res; 2021 Apr; 41(2):159-169. PubMed ID: 32718219 [TBL] [Abstract][Full Text] [Related]
8. In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. Abdelli I; Benariba N; Adjdir S; Fekhikher Z; Daoud I; Terki M; Benramdane H; Ghalem S J Biomol Struct Dyn; 2021 Feb; 39(3):816-822. PubMed ID: 31955660 [TBL] [Abstract][Full Text] [Related]
9. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet. Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248 [TBL] [Abstract][Full Text] [Related]
10. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
11. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays. Morais FS; Canuto KM; Ribeiro PRV; Silva AB; Pessoa ODL; Freitas CDT; Alencar NMN; Oliveira AC; Ramos MV J Ethnopharmacol; 2020 May; 253():112644. PubMed ID: 32058007 [TBL] [Abstract][Full Text] [Related]
12. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Riyaphan J; Pham DC; Leong MK; Weng CF Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944521 [TBL] [Abstract][Full Text] [Related]
13. Novel C-2 Symmetric Molecules as α-Glucosidase and α-Amylase Inhibitors: Design, Synthesis, Kinetic Evaluation, Molecular Docking and Pharmacokinetics. Shahzad D; Saeed A; Larik FA; Channar PA; Abbas Q; Alajmi MF; Arshad MI; Erben MF; Hassan M; Raza H; Seo SY; El-Seedi HR Molecules; 2019 Apr; 24(8):. PubMed ID: 30999646 [TBL] [Abstract][Full Text] [Related]
14. Novel acyl hydrazide derivatives of polyhydroquinoline as potent anti-diabetic and anti-glycating agents: Synthesis, in vitro α-amylase, α-glucosidase inhibition and anti-glycating activity with molecular docking insights. Ur Rahman S; Alam A; Parveen Z; Zainab ; Assad M; Adnan Ali Shah S; Rafiq H; Ayaz M; Latif A; Naveed Umar M; Ali M; Ahmad M Bioorg Chem; 2024 Sep; 150():107501. PubMed ID: 38865858 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. S LS; Raghu C; H A A; P A Carbohydr Polym; 2019 Apr; 209():350-355. PubMed ID: 30732817 [TBL] [Abstract][Full Text] [Related]
16. 2,4-Dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic Acid Derivatives: In Vitro Antidiabetic Activity, Molecular Modeling and In silico ADMET Screening. Thakral S; Singh V Med Chem; 2019; 15(2):186-195. PubMed ID: 30251608 [TBL] [Abstract][Full Text] [Related]
17. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Khamees Thabet H; Ragab A; Imran M; Helal MH; Ibrahim Alaqel S; Alshehri A; Ash Mohd A; Rakan Alshammari M; S Abusaif M; A Ammar Y Eur J Med Chem; 2024 Sep; 275():116589. PubMed ID: 38878516 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, α-glucosidase and α-amylase inhibitory activities, acute toxicity and molecular docking studies of thiazolidine-2,4-diones derivatives. Fettach S; Thari FZ; Hafidi Z; Tachallait H; Karrouchi K; El Achouri M; Cherrah Y; Sefrioui H; Bougrin K; Faouzi MEA J Biomol Struct Dyn; 2022 Nov; 40(18):8340-8351. PubMed ID: 33847536 [TBL] [Abstract][Full Text] [Related]
19. Feruloyl Sucrose Esters: Potent and Selective Inhibitors of α-glucosidase and α-amylase. Devaraj S; Yip YM; Panda P; Ong LL; Wong PWK; Zhang D; Ali Y; Judeh Z Curr Med Chem; 2022; 29(9):1606-1621. PubMed ID: 34455958 [TBL] [Abstract][Full Text] [Related]
20. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose? Figueiredo-González M; Grosso C; Valentão P; Andrade PB J Pharm Biomed Anal; 2016 Jan; 118():322-327. PubMed ID: 26590699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]