These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26154990)

  • 1. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.
    Zhao XJ; Zhu G; Fan YJ; Li HY; Wang ZL
    ACS Nano; 2015 Jul; 9(7):7671-7. PubMed ID: 26154990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface.
    Zhu G; Su Y; Bai P; Chen J; Jing Q; Yang W; Wang ZL
    ACS Nano; 2014 Jun; 8(6):6031-7. PubMed ID: 24745893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.
    Zhao XJ; Kuang SY; Wang ZL; Zhu G
    ACS Nano; 2018 May; 12(5):4280-4285. PubMed ID: 29620875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial-arrayed rotary electrification for high performance triboelectric generator.
    Zhu G; Chen J; Zhang T; Jing Q; Wang ZL
    Nat Commun; 2014 Mar; 5():3426. PubMed ID: 24594501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.
    Chen J; Yang J; Li Z; Fan X; Zi Y; Jing Q; Guo H; Wen Z; Pradel KC; Niu S; Wang ZL
    ACS Nano; 2015 Mar; 9(3):3324-31. PubMed ID: 25719956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy.
    Meng XS; Zhu G; Wang ZL
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8011-6. PubMed ID: 24824071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triboelectric-Potential-Regulated Charge Transport Through p-n Junctions for Area-Scalable Conversion of Mechanical Energy.
    Meng XS; Wang ZL; Zhu G
    Adv Mater; 2016 Jan; 28(4):668-76. PubMed ID: 26611707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%.
    Lin L; Xie Y; Niu S; Wang S; Yang PK; Wang ZL
    ACS Nano; 2015 Jan; 9(1):922-30. PubMed ID: 25555045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flutter-driven triboelectrification for harvesting wind energy.
    Bae J; Lee J; Kim S; Ha J; Lee BS; Park Y; Choong C; Kim JB; Wang ZL; Kim HY; Park JJ; Chung UI
    Nat Commun; 2014 Sep; 5():4929. PubMed ID: 25247474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing.
    Yang J; Chen J; Liu Y; Yang W; Su Y; Wang ZL
    ACS Nano; 2014 Mar; 8(3):2649-57. PubMed ID: 24524252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection.
    Zhang H; Zhang S; Yao G; Huang Z; Xie Y; Su Y; Yang W; Zheng C; Lin Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28142-7. PubMed ID: 26669205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-grating triboelectric generator based on sliding electrification.
    Zhu G; Chen J; Liu Y; Bai P; Zhou YS; Jing Q; Pan C; Wang ZL
    Nano Lett; 2013 May; 13(5):2282-9. PubMed ID: 23577639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Powered All-in-One Fluid Sensor Textile with Enhanced Triboelectric Effect on All-Immersed Dendritic Liquid-Solid Interface.
    Zhang L; Zhang N; Yang Y; Xiang S; Tao C; Yang S; Fan X
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30819-30826. PubMed ID: 30124283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester.
    Kim Y; Na J; Park C; Shin H; Kim E
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16279-86. PubMed ID: 26153798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesting energy from the natural vibration of human walking.
    Yang W; Chen J; Zhu G; Yang J; Bai P; Su Y; Jing Q; Cao X; Wang ZL
    ACS Nano; 2013 Dec; 7(12):11317-24. PubMed ID: 24180642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature-replicated nano-in-micro structures for triboelectric energy harvesting.
    Seol ML; Woo JH; Lee DI; Im H; Hur J; Choi YK
    Small; 2014 Oct; 10(19):3887-94. PubMed ID: 24912667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Spiral-Like Electrode Structure Design for Realization of Two Modes of Energy Harvesting.
    Chen L; Guo H; Xia X; Liu G; Shi H; Wang M; Xi Y; Hu C
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16450-7. PubMed ID: 26151162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording.
    Fan X; Chen J; Yang J; Bai P; Li Z; Wang ZL
    ACS Nano; 2015 Apr; 9(4):4236-43. PubMed ID: 25790372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-Based Direct-Current Electricity Generation Induced by Dynamic Electric Double Layers.
    Pan C; Meng J; Jia L; Pu X
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17649-17656. PubMed ID: 38552212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.