These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26155317)

  • 1. An Innovative Strategy for the Fabrication of Functional Cell Sheets Using an Electroactive Conducting Polymer.
    Lee H; Cho Y
    Theranostics; 2015; 5(9):1021-9. PubMed ID: 26155317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells.
    Jeon S; Moon JM; Lee ES; Kim YH; Cho Y
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4597-602. PubMed ID: 24652762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.
    Nickels JD; Schmidt CE
    J Biomed Mater Res A; 2013 May; 101(5):1464-71. PubMed ID: 23129217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites.
    Meng S; Rouabhia M; Shi G; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):332-44. PubMed ID: 18181107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased proliferation and differentiation of pre-osteoblasts MC3T3-E1 cells on nanostructured polypyrrole membrane under combined electrical and mechanical stimulation.
    Liu L; Li P; Zhou G; Wang M; Jia X; Liu M; Niu X; Song W; Liu H; Fan Y
    J Biomed Nanotechnol; 2013 Sep; 9(9):1532-9. PubMed ID: 23980501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration.
    Imashiro C; Hirano M; Morikura T; Fukuma Y; Ohnuma K; Kurashina Y; Miyata S; Takemura K
    Sci Rep; 2020 Jun; 10(1):9468. PubMed ID: 32528073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypyrrole-based conducting polymers and interactions with biological tissues.
    Ateh DD; Navsaria HA; Vadgama P
    J R Soc Interface; 2006 Dec; 3(11):741-52. PubMed ID: 17015302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering.
    Broda CR; Lee JY; Sirivisoot S; Schmidt CE; Harrison BS
    J Biomed Mater Res A; 2011 Sep; 98(4):509-16. PubMed ID: 21681943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-assisted synthesis of conducting polymer - polypyrrole - for the improvement of electric charge transfer through fungal cell wall.
    Apetrei RM; Carac G; Ramanaviciene A; Bahrim G; Tanase C; Ramanavicius A
    Colloids Surf B Biointerfaces; 2019 Mar; 175():671-679. PubMed ID: 30590328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes.
    Lee JW; Serna F; Schmidt CE
    Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells.
    Spearman BS; Hodge AJ; Porter JL; Hardy JG; Davis ZD; Xu T; Zhang X; Schmidt CE; Hamilton MC; Lipke EA
    Acta Biomater; 2015 Dec; 28():109-120. PubMed ID: 26407651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation.
    Durgam H; Sapp S; Deister C; Khaing Z; Chang E; Luebben S; Schmidt CE
    J Biomater Sci Polym Ed; 2010; 21(10):1265-82. PubMed ID: 20534184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Human Adipose-Derived Stem Cell-Derived Extracellular Vesicle-Functionalized Biotin-Doped Polypyrrole Titanium with Long-Term Stability and Potential Osteoinductive Ability.
    Chen L; Mou S; Li F; Zeng Y; Sun Y; Horch RE; Wei W; Wang Z; Sun J
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46183-46196. PubMed ID: 31718127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically Conductive Polydopamine-Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo.
    Kim S; Jang LK; Jang M; Lee S; Hardy JG; Lee JY
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33032-33042. PubMed ID: 30192136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of electroactive polypyrrole-tungsten disulfide nanocomposite for enhanced in vivo drug release in mice skin.
    Hsiao PF; Anbazhagan R; Tsai HC; Rajakumari Krishnamoorthi ; Lin SJ; Lin SY; Lee KY; Kao CY; Chen RS; Lai JY
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110330. PubMed ID: 31761209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation to promote osteogenesis using conductive polypyrrole films.
    Hu WW; Hsu YT; Cheng YC; Li C; Ruaan RC; Chien CC; Chung CA; Tsao CW
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():28-36. PubMed ID: 24582219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.
    Ko E; Yang K; Shin J; Cho SW
    Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release.
    Cho Y; Borgens RB
    Langmuir; 2011 May; 27(10):6316-22. PubMed ID: 21500819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of polypyrrole nanowires with positive effect on MC3T3-E1 cell functions through electrical stimulation.
    He Y; Wang S; Mu J; Dai L; Zhang Z; Sun Y; Shi W; Ge D
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():43-50. PubMed ID: 27987727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.