These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26155317)

  • 21. Control of neural stem cell survival by electroactive polymer substrates.
    Lundin V; Herland A; Berggren M; Jager EW; Teixeira AI
    PLoS One; 2011 Apr; 6(4):e18624. PubMed ID: 21494605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polypyrrole doped with 2 peptide sequences from laminin.
    Stauffer WR; Cui XT
    Biomaterials; 2006 Apr; 27(11):2405-13. PubMed ID: 16343612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
    Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY
    Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization.
    Hu WW; Chen TC; Tsao CW; Cheng YC
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1607-1619. PubMed ID: 30318825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin.
    Akkouch A; Shi G; Zhang Z; Rouabhia M
    J Biomed Mater Res A; 2010 Jan; 92(1):221-31. PubMed ID: 19172617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.
    Sajesh KM; Jayakumar R; Nair SV; Chennazhi KP
    Int J Biol Macromol; 2013 Nov; 62():465-71. PubMed ID: 24080452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells.
    Smith E; Yang J; McGann L; Sebald W; Uludag H
    Biomaterials; 2005 Dec; 26(35):7329-38. PubMed ID: 16019067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2010 Jun; 106(2):303-10. PubMed ID: 20091737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface engineering of living myoblasts via selective periodate oxidation.
    De Bank PA; Kellam B; Kendall DA; Shakesheff KM
    Biotechnol Bioeng; 2003 Mar; 81(7):800-8. PubMed ID: 12557313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole.
    Lee JY; Lee JW; Schmidt CE
    J R Soc Interface; 2009 Sep; 6(38):801-10. PubMed ID: 19068472
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Berti FV; Srisuk P; da Silva LP; Marques AP; Reis RL; Correlo VM
    Tissue Eng Part A; 2017 Sep; 23(17-18):968-979. PubMed ID: 28152667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of Aspergillus niger by conducting polymer, Polypyrrole, and the evaluation of electrochemical properties of modified cells.
    Apetrei RM; Carac G; Bahrim G; Ramanaviciene A; Ramanavicius A
    Bioelectrochemistry; 2018 Jun; 121():46-55. PubMed ID: 29353096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.
    Tabisz B; Schmitz W; Schmitz M; Luehmann T; Heusler E; Rybak JC; Meinel L; Fiebig JE; Mueller TD; Nickel J
    Biomacromolecules; 2017 Mar; 18(3):695-708. PubMed ID: 28211679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion.
    Lee JW; Serna F; Nickels J; Schmidt CE
    Biomacromolecules; 2006 Jun; 7(6):1692-5. PubMed ID: 16768385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secretory function of adrenal chromaffin cells cultured on polypyrrole films.
    Aoki T; Tanino M; Sanui K; Ogata N; Kumakura K
    Biomaterials; 1996 Oct; 17(20):1971-4. PubMed ID: 8894090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Schwann cell response on polypyrrole substrates upon electrical stimulation.
    Forciniti L; Ybarra J; Zaman MH; Schmidt CE
    Acta Biomater; 2014 Jun; 10(6):2423-33. PubMed ID: 24512979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of conducting polymers to wound care and skin tissue engineering: A review.
    Talikowska M; Fu X; Lisak G
    Biosens Bioelectron; 2019 Jun; 135():50-63. PubMed ID: 30999241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impedimetric sensing of cells on polypyrrole-based conducting polymers.
    Ateh DD; Waterworth A; Walker D; Brown BH; Navsaria H; Vadgama P
    J Biomed Mater Res A; 2007 Nov; 83(2):391-400. PubMed ID: 17450583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering.
    Aufan MR; Sumi Y; Kim S; Lee JY
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23454-63. PubMed ID: 26444932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing.
    Hong WY; Jeon SH; Lee ES; Cho Y
    Biomaterials; 2014 Dec; 35(36):9573-80. PubMed ID: 25192586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.