These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26155317)

  • 41. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.
    Stewart E; Kobayashi NR; Higgins MJ; Quigley AF; Jamali S; Moulton SE; Kapsa RM; Wallace GG; Crook JM
    Tissue Eng Part C Methods; 2015 Apr; 21(4):385-93. PubMed ID: 25296166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering.
    Sakaguchi K; Shimizu T; Okano T
    J Control Release; 2015 May; 205():83-8. PubMed ID: 25523520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole.
    Della Pia EA; Holm JV; Lloret N; Le Bon C; Popot JL; Zoonens M; Nygård J; Martinez KL
    ACS Nano; 2014 Feb; 8(2):1844-53. PubMed ID: 24476392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polypyrrole-based structures for activation of cellular functions under electrical stimulation.
    Uzieliene I; Popov A; Vaiciuleviciute R; Kirdaite G; Bernotiene E; Ramanaviciene A
    Bioelectrochemistry; 2024 Feb; 155():108585. PubMed ID: 37847982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).
    Ramanavicius A; Andriukonis E; Stirke A; Mikoliunaite L; Balevicius Z; Ramanaviciene A
    Enzyme Microb Technol; 2016 Feb; 83():40-7. PubMed ID: 26777249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application.
    Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI
    Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biotinylated conducting polypyrrole for the spatially controlled construction of an amperometric biosensor.
    Cosnier S; Stoytcheva M; Senillou A; Perrot H; Furriel RP; Leone FA
    Anal Chem; 1999 Sep; 71(17):3692-7. PubMed ID: 10489522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroactivity and stability of polylactide/polypyrrole composites.
    Zhang L; Meng S; Zhang Z
    J Biomater Sci Polym Ed; 2011; 22(14):1931-46. PubMed ID: 20961496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description.
    Ren CL; Carvajal D; Shull KR; Szleifer I
    Langmuir; 2009 Oct; 25(20):12283-92. PubMed ID: 19821628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing C2C12 myoblast differentiation using polycaprolactone-polypyrrole copolymer scaffolds.
    Browe D; Freeman J
    J Biomed Mater Res A; 2019 Jan; 107(1):220-231. PubMed ID: 30378775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstruction of functional tissues with cell sheet engineering.
    Yang J; Yamato M; Shimizu T; Sekine H; Ohashi K; Kanzaki M; Ohki T; Nishida K; Okano T
    Biomaterials; 2007 Dec; 28(34):5033-43. PubMed ID: 17761277
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components.
    Gilmore KJ; Kita M; Han Y; Gelmi A; Higgins MJ; Moulton SE; Clark GM; Kapsa R; Wallace GG
    Biomaterials; 2009 Oct; 30(29):5292-304. PubMed ID: 19643473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole.
    Zhang L; Stauffer WR; Jane EP; Sammak PJ; Cui XT
    Macromol Biosci; 2010 Dec; 10(12):1456-64. PubMed ID: 20954199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering.
    Yanoso-Scholl L; Jacobson JA; Bradica G; Lerner AL; O'Keefe RJ; Schwarz EM; Zuscik MJ; Awad HA
    J Biomed Mater Res A; 2010 Dec; 95(3):717-26. PubMed ID: 20725979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration.
    Zanjanizadeh Ezazi N; Shahbazi MA; Shatalin YV; Nadal E; Mäkilä E; Salonen J; Kemell M; Correia A; Hirvonen J; Santos HA
    Int J Pharm; 2018 Jan; 536(1):241-250. PubMed ID: 29195917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication and characterization of dry conducting polymer actuator by vapor phase polymerization of polypyrrole.
    Ramasamy MS; Mahapatra SS; Cho JW
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7553-7. PubMed ID: 25942824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells.
    Song Y; Ju Y; Morita Y; Xu B; Song G
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():120-6. PubMed ID: 24582231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications.
    Fredj HB; Helali S; Esseghaier C; Vonna L; Vidal L; Abdelghani A
    Talanta; 2008 May; 75(3):740-7. PubMed ID: 18585140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.