These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26156125)
1. Photosystem II repair in marine diatoms with contrasting photophysiologies. Lavaud J; Six C; Campbell DA Photosynth Res; 2016 Feb; 127(2):189-99. PubMed ID: 26156125 [TBL] [Abstract][Full Text] [Related]
2. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
3. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. Wu H; Cockshutt AM; McCarthy A; Campbell DA Plant Physiol; 2011 Aug; 156(4):2184-95. PubMed ID: 21617029 [TBL] [Abstract][Full Text] [Related]
4. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881 [TBL] [Abstract][Full Text] [Related]
6. Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates. Derks AK; Bruce D Photosynth Res; 2018 Nov; 138(2):149-165. PubMed ID: 30008155 [TBL] [Abstract][Full Text] [Related]
7. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. Domingues N; Matos AR; Marques da Silva J; Cartaxana P PLoS One; 2012; 7(6):e38162. PubMed ID: 22675519 [TBL] [Abstract][Full Text] [Related]
8. Connectivity among Photosystem II centers in phytoplankters: Patterns and responses. Xu K; Grant-Burt JL; Donaher N; Campbell DA Biochim Biophys Acta Bioenerg; 2017 Jun; 1858(6):459-474. PubMed ID: 28315315 [TBL] [Abstract][Full Text] [Related]
9. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Tanabe M; Ueno Y; Yokono M; Shen JR; Nagao R; Akimoto S Photosynth Res; 2020 Dec; 146(1-3):143-150. PubMed ID: 32067138 [TBL] [Abstract][Full Text] [Related]
10. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport. Osmond CB; Chow WS; Robinson SA Funct Plant Biol; 2022 May; 49(6):463-482. PubMed ID: 33705686 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581 [TBL] [Abstract][Full Text] [Related]
13. Differential modulation of photosystem II photochemical efficiency in six C Zia A; Gulzar S; Edwards GE Funct Plant Biol; 2024 Oct; 51():. PubMed ID: 39365896 [TBL] [Abstract][Full Text] [Related]
14. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
15. Regulation of excitation energy in Nannochloropsis photosystem II. Yokono M; Umetani I; Takabayashi A; Akimoto S; Tanaka A Photosynth Res; 2019 Mar; 139(1-3):155-161. PubMed ID: 29704164 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
17. Photosystem II photoinactivation, repair, and protection in marine centric diatoms. Wu H; Roy S; Alami M; Green BR; Campbell DA Plant Physiol; 2012 Sep; 160(1):464-76. PubMed ID: 22829321 [TBL] [Abstract][Full Text] [Related]
18. Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching. Eisenstadt D; Ohad I; Keren N; Kaplan A Environ Microbiol; 2008 Aug; 10(8):1997-2007. PubMed ID: 18397307 [TBL] [Abstract][Full Text] [Related]
19. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. Chukhutsina VU; Büchel C; van Amerongen H Biochim Biophys Acta; 2014 Jun; 1837(6):899-907. PubMed ID: 24582663 [TBL] [Abstract][Full Text] [Related]
20. Dynamic interplay between photodamage and photoprotection in photosystem II. Townsend AJ; Ware MA; Ruban AV Plant Cell Environ; 2018 May; 41(5):1098-1112. PubMed ID: 29210070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]