These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 26156207)
1. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207 [TBL] [Abstract][Full Text] [Related]
2. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides. Cao L; Zhao Y; Chu Z; Zhang X; Zhang W Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902 [TBL] [Abstract][Full Text] [Related]
3. Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides. Xiong Z; Chen Y; Zhang L; Ren J; Zhang Q; Ye M; Zhang W; Zou H ACS Appl Mater Interfaces; 2014 Dec; 6(24):22743-50. PubMed ID: 25466400 [TBL] [Abstract][Full Text] [Related]
4. Hydrophilic Nb⁵⁺-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides. Sun X; Liu X; Feng J; Li Y; Deng C; Duan G Anal Chim Acta; 2015 Jun; 880():67-76. PubMed ID: 26092339 [TBL] [Abstract][Full Text] [Related]
5. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
6. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Wu Y; Liu Q; Xie Y; Deng C Talanta; 2018 Dec; 190():298-312. PubMed ID: 30172513 [TBL] [Abstract][Full Text] [Related]
7. Development of Gd Jiang D; Li X; Ma J; Jia Q Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825 [TBL] [Abstract][Full Text] [Related]
8. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290 [TBL] [Abstract][Full Text] [Related]
9. Ti He Y; Zheng Q; Lin Z Mikrochim Acta; 2021 Apr; 188(5):150. PubMed ID: 33813605 [TBL] [Abstract][Full Text] [Related]
10. Core-shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Ding F; Zhao Y; Liu H; Zhang W Analyst; 2020 Jun; 145(12):4341-4351. PubMed ID: 32379252 [TBL] [Abstract][Full Text] [Related]
11. Organic molecule-assisted synthesis of Fe Li JY; Long XY; Sheng D; Lian HZ Talanta; 2020 Feb; 208():120437. PubMed ID: 31816680 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient enrichment of phosvitin phosphopeptides by novel magnetic carboxymethyl chitosan nanoparticles decorated with Fe (III) ions. Sun J; Liu Y; Su Y; Xia W; Yang Y J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Feb; 915-916():33-8. PubMed ID: 23314402 [TBL] [Abstract][Full Text] [Related]
13. Epitaxial Growth of Guanidyl-Functionalized Magnetic Metal-Organic Frameworks with Multiaffinity Sites for Selective Capture of Global Phosphopeptides. Zhang N; Huang T; Xie P; Yang Z; Zhang L; Wu X; Cai Z ACS Appl Mater Interfaces; 2022 Aug; 14(34):39364-39374. PubMed ID: 35993677 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides. Sun Y; Wang HF J Chromatogr A; 2013 Nov; 1316():62-8. PubMed ID: 24128437 [TBL] [Abstract][Full Text] [Related]
15. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides. Zhang L; Wang H; Liang Z; Yang K; Zhang L; Zhang Y J Sep Sci; 2011 Aug; 34(16-17):2122-30. PubMed ID: 21598383 [TBL] [Abstract][Full Text] [Related]
16. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides. He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954 [TBL] [Abstract][Full Text] [Related]
17. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
18. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Yao J; Sun N; Deng C; Zhang X Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411 [TBL] [Abstract][Full Text] [Related]
19. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. Sun H; Zhang Q; Zhang L; Zhang W; Zhang L J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203 [TBL] [Abstract][Full Text] [Related]
20. Ti Xiong Z; Zhang L; Fang C; Zhang Q; Ji Y; Zhang Z; Zhang W; Zou H J Mater Chem B; 2014 Jul; 2(28):4473-4480. PubMed ID: 32261549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]