These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26156298)

  • 21. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model microswimmers in channels with varying cross section.
    Malgaretti P; Stark H
    J Chem Phys; 2017 May; 146(17):174901. PubMed ID: 28477588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components: The Relevance of Interactions.
    Giuliani N; Heltai L; DeSimone A
    Soft Robot; 2018 Aug; 5(4):410-424. PubMed ID: 29762082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids.
    Thomases B; Guy RD
    Phys Rev Lett; 2014 Aug; 113(9):098102. PubMed ID: 25216008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergence of upstream swimming via a hydrodynamic transition.
    Tung CK; Ardon F; Roy A; Koch DL; Suarez SS; Wu M
    Phys Rev Lett; 2015 Mar; 114(10):108102. PubMed ID: 25815969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
    Butler VJ; Branicky R; Yemini E; Liewald JF; Gottschalk A; Kerr RA; Chklovskii DB; Schafer WR
    J R Soc Interface; 2015 Jan; 12(102):20140963. PubMed ID: 25551155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces.
    Contino M; Lushi E; Tuval I; Kantsler V; Polin M
    Phys Rev Lett; 2015 Dec; 115(25):258102. PubMed ID: 26722946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tangling of tethered swimmers: interactions between two nematodes.
    Backholm M; Schulman RD; Ryu WS; Dalnoki-Veress K
    Phys Rev Lett; 2014 Sep; 113(13):138101. PubMed ID: 25302918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.