These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26156377)

  • 41. Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation.
    Velasco Forte MN; Valverde I; Prabhu N; Correia T; Narayan SA; Bell A; Mathur S; Razavi R; Hussain T; Pushparajah K; Henningsson M
    J Cardiovasc Magn Reson; 2019 Feb; 21(1):13. PubMed ID: 30798789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients.
    Piccini D; Monney P; Sierro C; Coppo S; Bonanno G; van Heeswijk RB; Chaptinel J; Vincenti G; de Blois J; Koestner SC; Rutz T; Littmann A; Zenge MO; Schwitter J; Stuber M
    Radiology; 2014 Feb; 270(2):378-86. PubMed ID: 24471387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of cardiovascular disease in elite athletes using cardiac magnetic resonance imaging.
    Mangold S; Kramer U; Franzen E; Erz G; Bretschneider C; Seeger A; Claussen CD; Niess AM; Burgstahler C
    Rofo; 2013 Dec; 185(12):1167-74. PubMed ID: 23897528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid flow assessment of congenital heart disease with high-spatiotemporal-resolution gated spiral phase-contrast MR imaging.
    Steeden JA; Atkinson D; Hansen MS; Taylor AM; Muthurangu V
    Radiology; 2011 Jul; 260(1):79-87. PubMed ID: 21415248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla.
    Dabir D; Naehle CP; Clauberg R; Gieseke J; Schild HH; Thomas D
    J Cardiovasc Magn Reson; 2012 Oct; 14(1):75. PubMed ID: 23107424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved coronary magnetic resonance angiography using gadobenate dimeglumine in pediatric congenital heart disease.
    Silva Vieira M; Henningsson M; Dedieu N; Vassiliou VS; Bell A; Mathur S; Pushparajah K; Figueroa CA; Hussain T; Botnar R; Greil GF
    Magn Reson Imaging; 2018 Jun; 49():47-54. PubMed ID: 29339139
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fused whole-heart coronary and myocardial scar imaging using 3-T CMR. Implications for planning of cardiac resynchronization therapy and coronary revascularization.
    White JA; Fine N; Gula LJ; Yee R; Al-Admawi M; Zhang Q; Krahn A; Skanes A; MacDonald A; Peters T; Drangova M
    JACC Cardiovasc Imaging; 2010 Sep; 3(9):921-30. PubMed ID: 20846626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Free-breathing non-contrast flow-independent cardiovascular magnetic resonance angiography using cardiac gated, magnetization-prepared 3D Dixon method: assessment of thoracic vasculature in congenital heart disease.
    Isaak A; Luetkens JA; Faron A; Endler C; Mesropyan N; Katemann C; Zhang S; Kupczyk P; Kuetting D; Attenberger U; Dabir D
    J Cardiovasc Magn Reson; 2021 Jul; 23(1):91. PubMed ID: 34275486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases.
    Karimi-Bidhendi S; Arafati A; Cheng AL; Wu Y; Kheradvar A; Jafarkhani H
    J Cardiovasc Magn Reson; 2020 Nov; 22(1):80. PubMed ID: 33256762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 4D flow cardiac magnetic resonance in children and adults with congenital heart disease: Clinical experience in a high volume center.
    Isorni MA; Moisson L; Moussa NB; Monnot S; Raimondi F; Roussin R; Boet A; van Aerschot I; Fournier E; Cohen S; Kara M; Hascoet S
    Int J Cardiol; 2020 Dec; 320():168-177. PubMed ID: 32712110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-contrast free-breathing 3D cardiovascular magnetic resonance angiography using REACT (relaxation-enhanced angiography without contrast) compared to contrast-enhanced steady-state magnetic resonance angiography in complex pediatric congenital heart disease at 3T.
    Isaak A; Mesropyan N; Hart C; Zhang S; Kravchenko D; Endler C; Katemann C; Weber O; Pieper CC; Kuetting D; Attenberger U; Dabir D; Luetkens JA
    J Cardiovasc Magn Reson; 2022 Nov; 24(1):55. PubMed ID: 36384752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold.
    Kido T; Kido T; Nakamura M; Watanabe K; Schmidt M; Forman C; Mochizuki T
    J Cardiovasc Magn Reson; 2016 Aug; 18(1):50. PubMed ID: 27553656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing.
    Steeden JA; Kowalik GT; Tann O; Hughes M; Mortensen KH; Muthurangu V
    J Cardiovasc Magn Reson; 2018 Dec; 20(1):79. PubMed ID: 30518390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-navigated 3D whole-heart MRA for non-enhanced surveillance of thoracic aortic dilation: A comparison to CTA.
    Poskaite P; Pamminger M; Kranewitter C; Kremser C; Reindl M; Reiter G; Piccini D; Dumfarth J; Henninger B; Tiller C; Holzknecht M; Reinstadler SJ; Klug G; Metzler B; Mayr A
    Magn Reson Imaging; 2021 Feb; 76():123-130. PubMed ID: 33309920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation.
    Moghari MH; Barthur A; Amaral ME; Geva T; Powell AJ
    Magn Reson Med; 2018 Jul; 80(1):181-189. PubMed ID: 29222852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of ferumoxytol vs gadolinium on 4D flow cardiovascular magnetic resonance measurements in small children with congenital heart disease.
    Kollar SE; Udine ML; Mandell JG; Cross RR; Loke YH; Olivieri LJ
    J Cardiovasc Magn Reson; 2022 Nov; 24(1):58. PubMed ID: 36352454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anomalous origin of the coronary arteries in children: diagnostic role of three-dimensional coronary MR angiography.
    Clemente A; Del Borrello M; Greco P; Mannella P; Di Gregorio F; Romano S; Morra A
    Clin Imaging; 2010; 34(5):337-43. PubMed ID: 20813295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions.
    Zhang N; Zhang F; Deng Z; Yang Q; Diniz MA; Song SS; Schlick KH; Marcel Maya M; Gonzalez N; Li D; Zheng H; Liu X; Fan Z
    J Cardiovasc Magn Reson; 2018 Jun; 20(1):39. PubMed ID: 29898736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterization using partial saturation (pSAT).
    Velasco Forte MN; Pushparajah K; Schaeffter T; Valverde Perez I; Rhode K; Ruijsink B; Alhrishy M; Byrne N; Chiribiri A; Ismail T; Hussain T; Razavi R; Roujol S
    J Cardiovasc Magn Reson; 2017 Aug; 19(1):60. PubMed ID: 28806996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities.
    Walheim J; Dillinger H; Kozerke S
    J Cardiovasc Magn Reson; 2019 Jul; 21(1):42. PubMed ID: 31331353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.