These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26156377)

  • 61. Single breath-hold 3D measurement of left atrial volume using compressed sensing cardiovascular magnetic resonance and a non-model-based reconstruction approach.
    Vardoulis O; Monney P; Bermano A; Vaxman A; Gotsman C; Schwitter J; Stuber M; Stergiopulos N; Schwitter J
    J Cardiovasc Magn Reson; 2015 Jun; 17(1):47. PubMed ID: 26062814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diagnostic accuracy of sub-mSv prospective ECG-triggering cardiac CT in young infant with complex congenital heart disease.
    Gao W; Zhong YM; Sun AM; Wang Q; Ouyang RZ; Hu LW; Qiu HS; Wang SY; Li JY
    Int J Cardiovasc Imaging; 2016 Jun; 32(6):991-8. PubMed ID: 26897005
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Feasibility of cardiovascular magnetic resonance derived coronary wave intensity analysis.
    Raphael CE; Keegan J; Parker KH; Simpson R; Collinson J; Vassiliou V; Wage R; Drivas P; Strain S; Cooper R; de Silva R; Stables RH; Di Mario C; Frenneaux M; Pennell DJ; Davies JE; Hughes AD; Firmin D; Prasad SK
    J Cardiovasc Magn Reson; 2016 Dec; 18(1):93. PubMed ID: 27964736
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preoperative three-dimensional reconstruction of the heart and great vessels in patients with congenital heart disease. Technique and initial results.
    Laschinger JC; Vannier MW; Gutierrez F; Gronemeyer S; Weldon CS; Spray TL; Cox JL
    J Thorac Cardiovasc Surg; 1988 Sep; 96(3):464-73. PubMed ID: 3411993
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ex vivo cardiovascular magnetic resonance measurements of right and left ventricular mass compared with direct mass measurement in excised hearts after transplantation: a first human SSFP comparison.
    Farber NJ; Reddy ST; Doyle M; Rayarao G; Thompson DV; Olson P; Glass J; Williams RB; Yamrozik JA; Murali S; Biederman RW
    J Cardiovasc Magn Reson; 2014 Oct; 16(1):74. PubMed ID: 25315015
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Respiratory optimized data selection for more resilient self-navigated whole-heart coronary MR angiography.
    Chaptinel J; Piccini D; Bonanno G; Coppo S; Monney P; Stuber M; Schwitter J
    MAGMA; 2017 Jun; 30(3):215-225. PubMed ID: 27844220
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimization of 3D contrast-enhanced pulmonary magnetic resonance angiography in pediatric patients with congenital heart disease.
    Macgowan CK; Al-Kwifi O; Varodayan F; Yoo SJ; Wright GA; Kellenberger CJ
    Magn Reson Med; 2005 Jul; 54(1):207-12. PubMed ID: 15968668
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Volume-targeted and whole-heart coronary magnetic resonance angiography using an intravascular contrast agent.
    Tang L; Merkle N; Schär M; Korosoglou G; Solaiyappan M; Hombach V; Stuber M
    J Magn Reson Imaging; 2009 Nov; 30(5):1191-6. PubMed ID: 19856454
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping.
    Qi H; Bustin A; Kuestner T; Hajhosseiny R; Cruz G; Kunze K; Neji R; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2020 Feb; 22(1):12. PubMed ID: 32014001
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3D coronary MR angiography at 1.5 T: Volume-targeted versus whole-heart acquisition.
    Jin H; Zeng MS; Ge MY; Yun H; Yang S
    J Magn Reson Imaging; 2013 Sep; 38(3):594-602. PubMed ID: 23371834
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia.
    Lai LM; Cheng JY; Alley MT; Zhang T; Lustig M; Vasanawala SS
    J Magn Reson Imaging; 2017 May; 45(5):1407-1418. PubMed ID: 27678106
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique--comparison of an intravascular and extravascular contrast agent.
    Makowski MR; Wiethoff AJ; Jansen CH; Uribe S; Parish V; Schuster A; Botnar RM; Bell A; Kiesewetter C; Razavi R; Schaeffter T; Greil GF
    J Cardiovasc Magn Reson; 2012 Jul; 14(1):53. PubMed ID: 22849703
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease.
    Cheng JY; Hanneman K; Zhang T; Alley MT; Lai P; Tamir JI; Uecker M; Pauly JM; Lustig M; Vasanawala SS
    J Magn Reson Imaging; 2016 Jun; 43(6):1355-68. PubMed ID: 26646061
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla.
    Edelman RR; Giri S; Pursnani A; Botelho MP; Li W; Koktzoglou I
    J Cardiovasc Magn Reson; 2015 Nov; 17():101. PubMed ID: 26597281
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation.
    Crean AM; Maredia N; Ballard G; Menezes R; Wharton G; Forster J; Greenwood JP; Thomson JD
    J Cardiovasc Magn Reson; 2011 Dec; 13(1):78. PubMed ID: 22152255
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Free-breathing high resolution modified Dixon steady-state angiography with compressed sensing for the assessment of the thoracic vasculature in pediatric patients with congenital heart disease.
    Mesropyan N; Isaak A; Dabir D; Hart C; Faron A; Endler C; Kravchenko D; Katemann C; Pieper CC; Kuetting D; Attenberger UI; Luetkens JA
    J Cardiovasc Magn Reson; 2021 Oct; 23(1):117. PubMed ID: 34689811
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D PC-MRCA).
    Bustamante M; Gupta V; Carlhäll CJ; Ebbers T
    J Cardiovasc Magn Reson; 2017 Jun; 19(1):47. PubMed ID: 28645326
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [3 tesla magnetic resonance imaging in children and adults with congenital heart disease].
    Voges I; Jerosch-Herold M; Helle M; Hart C; Kramer HH; Rickers C
    Radiologe; 2010 Sep; 50(9):799-806, 808. PubMed ID: 20617299
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.
    Bizino MB; Tao Q; Amersfoort J; Siebelink HJ; van den Bogaard PJ; van der Geest RJ; Lamb HJ
    Eur Radiol; 2018 Sep; 28(9):4027-4035. PubMed ID: 29626239
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-dimensional free breathing whole heart cardiovascular magnetic resonance T
    Guo R; Chen Z; Wang Y; Herzka DA; Luo J; Ding H
    J Cardiovasc Magn Reson; 2018 Sep; 20(1):64. PubMed ID: 30220254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.