These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26156377)

  • 81. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender.
    Liu B; Dardeer AM; Moody WE; Hayer MK; Baig S; Price AM; Leyva F; Edwards NC; Steeds RP
    Int J Cardiovasc Imaging; 2018 May; 34(5):761-775. PubMed ID: 29181827
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: a multi-scanner study.
    Minderhoud SCS; van der Velde N; Wentzel JJ; van der Geest RJ; Attrach M; Wielopolski PA; Budde RPJ; Helbing WA; Roos-Hesselink JW; Hirsch A
    J Cardiovasc Magn Reson; 2020 Sep; 22(1):68. PubMed ID: 32938483
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction.
    Al-Wakeel-Marquard N; Rastin S; Muench F; O H-Ici D; Yilmaz S; Berger F; Kuehne T; Messroghli DR
    Int J Cardiovasc Imaging; 2017 Dec; 33(12):1961-1968. PubMed ID: 28620681
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction.
    van Engelen A; Silva Vieira M; Rafiq I; Cecelja M; Schneider T; de Bliek H; Figueroa CA; Hussain T; Botnar RM; Alastruey J
    J Cardiovasc Magn Reson; 2017 Mar; 19(1):32. PubMed ID: 28270208
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Myocardial late gadolinium enhancement using delayed 3D IR-FLASH in the pediatric population: feasibility and diagnostic performance compared to single-shot PSIR-bSSFP.
    Saprungruang A; Aguet J; Gill N; Tassos VP; Amirabadi A; Seed M; Yoo SJ; Lam CZ
    J Cardiovasc Magn Reson; 2023 Jan; 25(1):2. PubMed ID: 36683053
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Robust volume-targeted balanced steady-state free-precession coronary magnetic resonance angiography in a breathhold at 3.0 Tesla: a reproducibility study.
    Soleimanifard S; Stuber M; Hays AG; Weiss RG; Schär M
    J Cardiovasc Magn Reson; 2014 Apr; 16(1):27. PubMed ID: 24758168
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cardiovascular magnetic resonance tagging of the right ventricular free wall for the assessment of long axis myocardial function in congenital heart disease.
    Chen SS; Keegan J; Dowsey AW; Ismail T; Wage R; Li W; Yang GZ; Firmin DN; Kilner PJ
    J Cardiovasc Magn Reson; 2011 Dec; 13(1):80. PubMed ID: 22168638
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging.
    Luijnenburg SE; Robbers-Visser D; Moelker A; Vliegen HW; Mulder BJ; Helbing WA
    Int J Cardiovasc Imaging; 2010 Jan; 26(1):57-64. PubMed ID: 19757150
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Time-resolved contrast-enhanced MR angiography of the thorax in adults with congenital heart disease.
    Mohrs OK; Petersen SE; Voigtlaender T; Peters J; Nowak B; Heinemann MK; Kauczor HU
    AJR Am J Roentgenol; 2006 Oct; 187(4):1107-14. PubMed ID: 16985163
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: A comparison with 3-Tesla cardiac magnetic resonance.
    Levy F; Marechaux S; Iacuzio L; Schouver ED; Castel AL; Toledano M; Rusek S; Dor V; Tribouilloy C; Dreyfus G
    Arch Cardiovasc Dis; 2018; 111(8-9):507-517. PubMed ID: 29610031
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries.
    Tobler D; Motwani M; Wald RM; Roche SL; Verocai F; Iwanochko RM; Greenwood JP; Oechslin EN; Crean AM
    J Cardiovasc Magn Reson; 2014 Dec; 16(1):98. PubMed ID: 25497205
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study.
    Banka P; Robinson JD; Uppu SC; Harris MA; Hasbani K; Lai WW; Richmond ME; Fratz S; Jain S; Johnson TR; Maskatia SA; Lu JC; Samyn MM; Patton D; Powell AJ
    J Cardiovasc Magn Reson; 2015 Nov; 17():96. PubMed ID: 26576638
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: comparison with tissue Doppler imaging.
    Wu V; Chyou JY; Chung S; Bhagavatula S; Axel L
    J Cardiovasc Magn Reson; 2014 Sep; 16(1):71. PubMed ID: 25242199
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Extent of Myocardium at Risk for Left Anterior Descending Artery, Right Coronary Artery, and Left Circumflex Artery Occlusion Depicted by Contrast-Enhanced Steady State Free Precession and T2-Weighted Short Tau Inversion Recovery Magnetic Resonance Imaging.
    Nordlund D; Heiberg E; Carlsson M; Fründ ET; Hoffmann P; Koul S; Atar D; Aletras AH; Erlinge D; Engblom H; Arheden H
    Circ Cardiovasc Imaging; 2016 Jul; 9(7):. PubMed ID: 27412659
    [TBL] [Abstract][Full Text] [Related]  

  • 95. High-Spatial-Resolution 3D Whole-Heart MRI T2 Mapping for Assessment of Myocarditis.
    Bustin A; Hua A; Milotta G; Jaubert O; Hajhosseiny R; Ismail TF; Botnar RM; Prieto C
    Radiology; 2021 Mar; 298(3):578-586. PubMed ID: 33464179
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Rapid 3D imaging of the lower airway by MRI in patients with congenital heart disease: A retrospective comparison of delayed volume interpolated breath-hold examination (VIBE) to turbo spin echo (TSE).
    Goot BH; Patel S; Fonseca B
    Congenit Heart Dis; 2017 Jan; 12(1):84-90. PubMed ID: 27611348
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP.
    Potthast S; Mitsumori L; Stanescu LA; Richardson ML; Branch K; Dubinsky TJ; Maki JH
    J Magn Reson Imaging; 2010 Jan; 31(1):177-84. PubMed ID: 20027585
    [TBL] [Abstract][Full Text] [Related]  

  • 98. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation.
    Uus AU; van Poppel MPM; Steinweg JK; Grigorescu I; Ramirez Gilliland P; Roberts TA; Egloff Collado A; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M
    J Cardiovasc Magn Reson; 2022 Dec; 24(1):71. PubMed ID: 36517850
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease.
    Henningsson M; Shome J; Bratis K; Vieira MS; Nagel E; Botnar RM
    J Cardiovasc Magn Reson; 2017 Sep; 19(1):68. PubMed ID: 28893296
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Munoz C; Bustin A; Neji R; Kunze KP; Forman C; Schmidt M; Hajhosseiny R; Masci PG; Zeilinger M; Wuest W; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2020 Jul; 22(1):53. PubMed ID: 32684167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.