BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26156628)

  • 1. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling.
    Stones DH; Krachler AM
    Small GTPases; 2015; 6(3):153-6. PubMed ID: 26156628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.
    Lim J; Stones DH; Hawley CA; Watson CA; Krachler AM
    PLoS Pathog; 2014 Sep; 10(9):e1004421. PubMed ID: 25255250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytotoxic type 3 secretion system 1 of
    De Nisco NJ; Kanchwala M; Li P; Fernandez J; Xing C; Orth K
    Sci Signal; 2017 May; 10(479):. PubMed ID: 28512145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of the interaction between bacterial adhesin multivalent adhesion molecule 7 (MAM7) protein and its host cell ligands.
    Krachler AM; Orth K
    J Biol Chem; 2011 Nov; 286(45):38939-47. PubMed ID: 21937438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling.
    Yarbrough ML; Li Y; Kinch LN; Grishin NV; Ball HL; Orth K
    Science; 2009 Jan; 323(5911):269-72. PubMed ID: 19039103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPylation of Rho GTPases subverts multiple host signaling processes.
    Woolery AR; Yu X; LaBaer J; Orth K
    J Biol Chem; 2014 Nov; 289(47):32977-88. PubMed ID: 25301945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway.
    Hiyoshi H; Okada R; Matsuda S; Gotoh K; Akeda Y; Iida T; Kodama T
    PLoS Pathog; 2015 Mar; 11(3):e1004694. PubMed ID: 25738744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by gram-negative pathogens.
    Krachler AM; Ham H; Orth K
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11614-9. PubMed ID: 21709226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrio parahaemolyticus strengthens their virulence through modulation of cellular reactive oxygen species in vitro.
    El-Malah SS; Yang Z; Hu M; Li Q; Pan Z; Jiao X
    Front Cell Infect Microbiol; 2014; 4():168. PubMed ID: 25566508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Vibrio parahaemolyticus effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection.
    Okada R; Zhou X; Hiyoshi H; Matsuda S; Chen X; Akeda Y; Kashimoto T; Davis BM; Iida T; Waldor MK; Kodama T
    Cell Microbiol; 2014 Jun; 16(6):938-47. PubMed ID: 24345190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain.
    Luong P; Kinch LN; Brautigam CA; Grishin NV; Tomchick DR; Orth K
    J Biol Chem; 2010 Jun; 285(26):20155-63. PubMed ID: 20410310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.
    Weber MM; Faris R; van Schaik EJ; McLachlan JT; Wright WU; Tellez A; Roman VA; Rowin K; Case ED; Luo ZQ; Samuel JE
    Infect Immun; 2016 Sep; 84(9):2524-33. PubMed ID: 27324482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection.
    Lafrance AE; Chimalapati S; Garcia Rodriguez N; Kinch LN; Kaval KG; Orth K
    mBio; 2022 Aug; 13(4):e0162922. PubMed ID: 35862776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arp2/3-independent assembly of actin by Vibrio type III effector VopL.
    Liverman AD; Cheng HC; Trosky JE; Leung DW; Yarbrough ML; Burdette DL; Rosen MK; Orth K
    Proc Natl Acad Sci U S A; 2007 Oct; 104(43):17117-22. PubMed ID: 17942696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of a bacterial virulence protein by the GTPase RhoA.
    Christen M; Coye LH; Hontz JS; LaRock DL; Pfuetzner RA; Megha ; Miller SI
    Sci Signal; 2009 Nov; 2(95):ra71. PubMed ID: 19887681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus.
    Rivera-Cancel G; Orth K
    Gut Microbes; 2017 Jul; 8(4):366-373. PubMed ID: 28129014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen.
    Zhou X; Massol RH; Nakamura F; Chen X; Gewurz BE; Davis BM; Lencer WI; Waldor MK
    mBio; 2014 Aug; 5(4):. PubMed ID: 25139905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.
    de Souza Santos M; Salomon D; Orth K
    PLoS Pathog; 2017 Jun; 13(6):e1006438. PubMed ID: 28640881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virulence determinants for Vibrio parahaemolyticus infection.
    Zhang L; Orth K
    Curr Opin Microbiol; 2013 Feb; 16(1):70-7. PubMed ID: 23433802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton.
    Kodama T; Hiyoshi H; Okada R; Matsuda S; Gotoh K; Iida T
    Cell Microbiol; 2015 Feb; 17(2):183-90. PubMed ID: 25495647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.