BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26156758)

  • 1. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
    Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV
    J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM modeling of environmental effects on electronic transitions of the FMO complex.
    Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y
    J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of bacteriochlorophyll conformation to the distribution of site-energies in the FMO protein.
    MacGowan SA; Senge MO
    Biochim Biophys Acta; 2016 Apr; 1857(4):427-42. PubMed ID: 26851682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation.
    Abramavicius V; Abramavicius D
    J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method.
    Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV
    J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of the triplet excitations in the Fenna-Matthews-Olson complex.
    Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S
    J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit correlated exciton-vibrational dynamics of the FMO complex.
    Schulze J; Kühn O
    J Phys Chem B; 2015 May; 119(20):6211-6. PubMed ID: 25927682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid QM/MM study of FMO complex with polarized protein-specific charge.
    Jia X; Mei Y; Zhang JZ; Mo Y
    Sci Rep; 2015 Nov; 5():17096. PubMed ID: 26611739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Mujica-Martinez CA; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna-Matthews-Olson Antenna Systems.
    Aghtar M; Strümpfer J; Olbrich C; Schulten K; Kleinekathöfer U
    J Phys Chem Lett; 2014 Sep; 5(18):3131-7. PubMed ID: 26276324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.
    Fransted KA; Caram JR; Hayes D; Engel GS
    J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Consistent Molecular Dynamics Force Fields for Biological Chromophores via Force Matching.
    Claridge K; Troisi A
    J Phys Chem B; 2019 Jan; 123(2):428-438. PubMed ID: 30565460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting.
    Rivera E; Montemayor D; Masia M; Coker DF
    J Phys Chem B; 2013 May; 117(18):5510-21. PubMed ID: 23597258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a.
    Pedersen MØ; Pham L; Steensgaard DB; Miller M
    Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex.
    Olbrich C; Jansen TL; Liebers J; Aghtar M; Strümpfer J; Schulten K; Knoester J; Kleinekathöfer U
    J Phys Chem B; 2011 Jul; 115(26):8609-21. PubMed ID: 21635010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.