BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26156758)

  • 21. Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis.
    Maiuri M; Ostroumov EE; Saer RG; Blankenship RE; Scholes GD
    Nat Chem; 2018 Feb; 10(2):177-183. PubMed ID: 29359758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitation energy trapping and dissipation by Ni-substituted bacteriochlorophyll a in reconstituted LH1 complexes from Rhodospirillum rubrum.
    Lambrev PH; Miloslavina Y; van Stokkum IH; Stahl AD; Michalik M; Susz A; Tworzydło J; Fiedor J; Huhn G; Groot ML; van Grondelle R; Garab G; Fiedor L
    J Phys Chem B; 2013 Sep; 117(38):11260-71. PubMed ID: 23837465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.
    Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE
    Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Open quantum system parameters for light harvesting complexes from molecular dynamics.
    Wang X; Ritschel G; Wüster S; Eisfeld A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.
    Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R
    J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.
    Adolphs J; Renger T
    Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex.
    Maity S; Bold BM; Prajapati JD; Sokolov M; Kubař T; Elstner M; Kleinekathöfer U
    J Phys Chem Lett; 2020 Oct; 11(20):8660-8667. PubMed ID: 32991176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.
    Renger T; Klinger A; Steinecker F; Schmidt am Busch M; Numata J; Müh F
    J Phys Chem B; 2012 Dec; 116(50):14565-80. PubMed ID: 23163520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex.
    Baker LA; Habershon S
    J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
    Yeh SH; Kais S
    J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective chemical shift assignment of bacteriochlorophyll a in uniformly [13C-15N]-labeled light-harvesting 1 complexes by solid-state NMR in ultrahigh magnetic field.
    Pandit A; Buda F; van Gammeren AJ; Ganapathy S; de Groot HJ
    J Phys Chem B; 2010 May; 114(18):6207-15. PubMed ID: 20408539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study.
    Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
    Thilagam A
    J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum.
    Magdaong NCM; Saer RG; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2017 May; 121(18):4700-4712. PubMed ID: 28422512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer.
    Klinger A; Lindorfer D; Müh F; Renger T
    J Chem Phys; 2020 Dec; 153(21):215103. PubMed ID: 33291900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stochastic surrogate Hamiltonian approach of coherent and incoherent exciton transport in the Fenna-Matthews-Olson complex.
    Renaud N; Ratner MA; Mujica V
    J Chem Phys; 2011 Aug; 135(7):075102. PubMed ID: 21861585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.
    Wu J; Liu F; Ma J; Silbey RJ; Cao J
    J Chem Phys; 2012 Nov; 137(17):174111. PubMed ID: 23145721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intensity dependence of the excited state lifetimes and triplet conversion yield in the Fenna-Matthews-Olson antenna protein.
    Orf GS; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2014 Feb; 118(8):2058-69. PubMed ID: 24490821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quest for spatially correlated fluctuations in the FMO light-harvesting complex.
    Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U
    J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex.
    Hu Z; Liu Z; Sun X
    J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.