BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26156967)

  • 21. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle.
    Vavvas D; Apazidis A; Saha AK; Gamble J; Patel A; Kemp BE; Witters LA; Ruderman NB
    J Biol Chem; 1997 May; 272(20):13255-61. PubMed ID: 9148944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase.
    Hardie DG; Pan DA
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1064-70. PubMed ID: 12440973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.
    Palacios-González B; Zarain-Herzberg A; Flores-Galicia I; Noriega LG; Alemán-Escondrillas G; Zariñan T; Ulloa-Aguirre A; Torres N; Tovar AR
    Biochim Biophys Acta; 2014 Jan; 1841(1):132-40. PubMed ID: 24013029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the AMP-activated protein kinase in regulating fatty acid metabolism during exercise.
    Steinberg GR
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):315-22. PubMed ID: 19448692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Malonyl-CoA, fuel sensing, and insulin resistance.
    Ruderman NB; Saha AK; Vavvas D; Witters LA
    Am J Physiol; 1999 Jan; 276(1):E1-E18. PubMed ID: 9886945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PHD3 Loss Promotes Exercise Capacity and Fat Oxidation in Skeletal Muscle.
    Yoon H; Spinelli JB; Zaganjor E; Wong SJ; German NJ; Randall EC; Dean A; Clermont A; Paulo JA; Garcia D; Li H; Rombold O; Agar NYR; Goodyear LJ; Shaw RJ; Gygi SP; Auwerx J; Haigis MC
    Cell Metab; 2020 Aug; 32(2):215-228.e7. PubMed ID: 32663458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA.
    Lane MD; Wolfgang M; Cha SH; Dai Y
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S49-54. PubMed ID: 18719599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice.
    Glund S; Schoelch C; Thomas L; Niessen HG; Stiller D; Roth GJ; Neubauer H
    Diabetologia; 2012 Jul; 55(7):2044-53. PubMed ID: 22532389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle.
    Ruderman NB; Dean D
    J Basic Clin Physiol Pharmacol; 1998; 9(2-4):295-308. PubMed ID: 10212840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the Anti-Fibrotic Effect of Metformin.
    Lee M; Katerelos M; Gleich K; Galic S; Kemp BE; Mount PF; Power DA
    J Am Soc Nephrol; 2018 Sep; 29(9):2326-2336. PubMed ID: 29976587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment.
    Steinberg GR; Rush JW; Dyck DJ
    Am J Physiol Endocrinol Metab; 2003 Mar; 284(3):E648-54. PubMed ID: 12441311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Malonyl-CoA--regulator of fatty acid oxidation in muscle during exercise.
    Winder WW
    Exerc Sport Sci Rev; 1998; 26():117-32. PubMed ID: 9696987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic of AMPK/ACC2 regulating myoblast differentiation by fatty acid oxidation of goat.
    Kang Z; Zhang Z; Li J; Deng K; Wang F; Fan Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132243. PubMed ID: 38744369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice.
    Harada N; Oda Z; Hara Y; Fujinami K; Okawa M; Ohbuchi K; Yonemoto M; Ikeda Y; Ohwaki K; Aragane K; Tamai Y; Kusunoki J
    Mol Cell Biol; 2007 Mar; 27(5):1881-8. PubMed ID: 17210641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The subcellular localization of acetyl-CoA carboxylase 2.
    Abu-Elheiga L; Brinkley WR; Zhong L; Chirala SS; Woldegiorgis G; Wakil SJ
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1444-9. PubMed ID: 10677481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.
    Kimber NE; Cameron-Smith D; McGee SL; Hargreaves M
    J Appl Physiol (1985); 2013 Jun; 114(11):1577-85. PubMed ID: 23519231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.