BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26157158)

  • 1. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation-desiccation resistance hypothesis.
    King KJ; Sinclair BJ
    J Exp Biol; 2015 Jul; 218(Pt 13):1995-2004. PubMed ID: 26157158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation-desiccation resistance hypothesis.
    Ramniwas S; Kajla B; Dev K; Parkash R
    J Exp Biol; 2013 Apr; 216(Pt 7):1244-54. PubMed ID: 23239892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence of water balance mechanisms in two melanic Drosophila species from the western Himalayas.
    Parkash R; Aggarwal DD; Kalra B; Ranga P
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):531-41. PubMed ID: 21220040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of body melanisation on desiccation resistance in montane populations of D. melanogaster: Analysis of seasonal variation.
    Parkash R; Sharma V; Kalra B
    J Insect Physiol; 2009 Oct; 55(10):898-908. PubMed ID: 19538968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal changes in humidity level in the tropics impact body color polymorphism and desiccation resistance in Drosophila jambulina-Evidence for melanism-desiccation hypothesis.
    Parkash R; Singh S; Ramniwas S
    J Insect Physiol; 2009 Apr; 55(4):358-68. PubMed ID: 19200435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster.
    Parkash R; Rajpurohit S; Ramniwas S
    J Insect Physiol; 2008 Jun; 54(6):1050-6. PubMed ID: 18519137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of water balance mechanisms and acclimation potential in body color morphs of Drosophila ananassae.
    Parkash R; Aggarwal DD; Lambhod C; Singh D
    J Exp Zool A Ecol Genet Physiol; 2014 Jan; 321(1):13-27. PubMed ID: 24167067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sexual dimorphism for water balance mechanisms in montane populations of Drosophila kikkawai.
    Parkash R; Sharma V; Kalra B
    Biol Lett; 2010 Aug; 6(4):570-4. PubMed ID: 20106858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of water balance mechanisms in two sibling species (Drosophila simulans and D. melanogaster): effects of growth temperatures.
    Parkash R; Aggarwal DD; Singh D; Lambhod C; Ranga P
    J Comp Physiol B; 2013 Apr; 183(3):359-78. PubMed ID: 23080219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-specific divergence for adaptations to dehydration stress in Drosophila kikkawai.
    Parkash R; Ranga P
    J Exp Biol; 2013 Sep; 216(Pt 17):3301-13. PubMed ID: 23926311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robertsonian translocations and B chromosomes in the Wellington tree weta, Hemideina crassidens (Orthoptera: Anostostomatidae).
    Morgan-Richards M
    Hereditas; 2000; 132(1):49-54. PubMed ID: 10857259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae).
    Ramløv H; Wharton DA; Wilson PW
    Cryobiology; 1996 Dec; 33(6):607-13. PubMed ID: 8975688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ.
    Nishino H; Field LH
    J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.
    Stinziano JR; Sové RJ; Rundle HD; Sinclair BJ
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Feb; 180():38-42. PubMed ID: 25460832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina).
    Twort VG; Dennis AB; Park D; Lomas KF; Newcomb RD; Buckley TR
    PLoS One; 2017; 12(11):e0188147. PubMed ID: 29131842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold tolerance of New Zealand alpine insects.
    Wharton DA
    J Insect Physiol; 2011 Aug; 57(8):1090-5. PubMed ID: 21397607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fission or fusion? Mitochondrial DNA phylogenetics of the chromosome races of Hemideina crassidens (Orthoptera: Anostostomatidae).
    Morgan-Richards M
    Cytogenet Genome Res; 2002; 96(1-4):217-22. PubMed ID: 12438802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoidance of intracellular freezing by the freezing-tolerant New Zealand Alpine weta Hemideina maori (Orthoptera: Stenopelmatidae).
    Wharton DA; Sinclair BJ
    J Insect Physiol; 1997 Jul; 43(7):621-625. PubMed ID: 12769972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta.
    Farnworth B; Innes J; Kelly C; Littler R; Waas JR
    Environ Pollut; 2018 May; 236():82-90. PubMed ID: 29414377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in cuticular lipids, water loss and desiccation resistance in a tropical drosophilid: analysis of variation between and within populations.
    Parkash R; Kalra B; Sharma V
    Fly (Austin); 2008; 2(4):189-97. PubMed ID: 18719406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.