These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26157576)

  • 41. LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders.
    Levasseur R; Lacombe D; de Vernejoul MC
    Joint Bone Spine; 2005 May; 72(3):207-14. PubMed ID: 15850991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of Liuwei Dihuang on canonical Wnt/β-catenin signaling pathway in osteoporosis.
    Xia B; Xu B; Sun Y; Xiao L; Pan J; Jin H; Tong P
    J Ethnopharmacol; 2014 Apr; 153(1):133-41. PubMed ID: 24530448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation.
    Khrystoforova I; Shochat-Carvalho C; Harari R; Henke K; Woronowicz K; Harris MP; Karasik D
    Front Endocrinol (Lausanne); 2022; 13():985304. PubMed ID: 36120446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "noncanonical" WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency.
    Ring L; Neth P; Weber C; Steffens S; Faussner A
    Cell Signal; 2014 Feb; 26(2):260-7. PubMed ID: 24269653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LRP5 and bone mass regulation: Where are we now?
    Johnson ML
    Bonekey Rep; 2012; 1():1. PubMed ID: 23951413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases.
    Brunetti G; D'Amato G; Chiarito M; Tullo A; Colaianni G; Colucci S; Grano M; Faienza MF
    World J Pediatr; 2019 Feb; 15(1):4-11. PubMed ID: 30343446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth.
    Duan P; Bonewald LF
    Int J Biochem Cell Biol; 2016 Aug; 77(Pt A):23-29. PubMed ID: 27210503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chrysosplenetin promotes osteoblastogenesis of bone marrow stromal cells via Wnt/β-catenin pathway and enhances osteogenesis in estrogen deficiency-induced bone loss.
    Hong G; He X; Shen Y; Chen X; Yang F; Yang P; Pang F; Han X; He W; Wei Q
    Stem Cell Res Ther; 2019 Aug; 10(1):277. PubMed ID: 31464653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New Insights into Wnt-Lrp5/6-β-Catenin Signaling in Mechanotransduction.
    Kang KS; Robling AG
    Front Endocrinol (Lausanne); 2014; 5():246. PubMed ID: 25653639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LGR4 acts as a key receptor for R-spondin 2 to promote osteogenesis through Wnt signaling pathway.
    Zhu C; Zheng XF; Yang YH; Li B; Wang YR; Jiang SD; Jiang LS
    Cell Signal; 2016 Aug; 28(8):989-1000. PubMed ID: 27140682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy.
    Sabbagh Y; Graciolli FG; O'Brien S; Tang W; dos Reis LM; Ryan S; Phillips L; Boulanger J; Song W; Bracken C; Liu S; Ledbetter S; Dechow P; Canziani ME; Carvalho AB; Jorgetti V; Moyses RM; Schiavi SC
    J Bone Miner Res; 2012 Aug; 27(8):1757-72. PubMed ID: 22492547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CathepsinKCre mediated deletion of βcatenin results in dramatic loss of bone mass by targeting both osteoclasts and osteoblastic cells.
    Ruiz P; Martin-Millan M; Gonzalez-Martin MC; Almeida M; González-Macias J; Ros MA
    Sci Rep; 2016 Nov; 6():36201. PubMed ID: 27804995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation.
    Haÿ E; Buczkowski T; Marty C; Da Nascimento S; Sonnet P; Marie PJ
    J Bone Miner Res; 2012 Sep; 27(9):1852-63. PubMed ID: 22576936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice.
    Frey JL; Kim SP; Li Z; Wolfgang MJ; Riddle RC
    Endocrinology; 2018 Jan; 159(1):272-284. PubMed ID: 29077850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relevance of Wnt signaling for osteoanabolic therapy.
    Yorgan TA; Schinke T
    Mol Cell Ther; 2014; 2():22. PubMed ID: 26056589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Paracrine and endocrine functions of osteocytes.
    Michigami T
    Clin Pediatr Endocrinol; 2023; 32(1):1-10. PubMed ID: 36761497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Osteocyte-mediated mechanical response controls osteoblast differentiation and function.
    Buck HV; Stains JP
    Front Physiol; 2024; 15():1364694. PubMed ID: 38529481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice.
    Maupin KA; Droscha CJ; Williams BO
    Bone Res; 2013 Mar; 1(1):27-71. PubMed ID: 26273492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sclerostin and Wnt Signaling in Idiopathic Juvenile Osteoporosis Using High-Resolution Confocal Microscopy for Three-Dimensional Analyses.
    Pereira RC; Noche KJ; Gales B; Chen Z; Salusky IB; Albrecht LV
    Children (Basel); 2024 Jul; 11(7):. PubMed ID: 39062269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.