BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26157732)

  • 1. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation.
    Kazempour M; Saeedimoghadam M; Shekoohi Shooli F; Shokrpour N
    J Biomed Phys Eng; 2015 Jun; 5(2):67-76. PubMed ID: 26157732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the scattered radiations of lead and lead-free aprons in diagnostic radiology by MCNPX.
    Tayebi M; Shooli FS; Saeedi-Moghadam M
    Technol Health Care; 2017; 25(3):513-520. PubMed ID: 28085021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians.
    McCaffrey JP; Tessier F; Shen H
    Med Phys; 2012 Jul; 39(7):4537-46. PubMed ID: 22830785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not all lightweight lead aprons and thyroid shields are alike.
    Fakhoury E; Provencher JA; Subramaniam R; Finlay DJ
    J Vasc Surg; 2019 Jul; 70(1):246-250. PubMed ID: 30292602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the transmitted exposure through lead equivalent aprons used in a radiology department, including the contribution from backscatter.
    Christodoulou EG; Goodsitt MM; Larson SC; Darner KL; Satti J; Chan HP
    Med Phys; 2003 Jun; 30(6):1033-8. PubMed ID: 12852526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel paint design based on nanopowder to protection against X and gamma rays.
    Movahedi MM; Abdi A; Mehdizadeh A; Dehghan N; Heidari E; Masumi Y; Abbaszadeh M
    Indian J Nucl Med; 2014 Jan; 29(1):18-21. PubMed ID: 24591777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of using scatter-mimicking beams instead of standard beams to measure penetration when assessing the protective value of radiation-protective garments.
    Jones AK; Pasciak AS; Wagner LK
    Med Phys; 2018 Mar; 45(3):1071-1079. PubMed ID: 29314058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Antimony-Bismuth Aprons as Efficient as Lead Rubber Aprons in Providing Shielding against Scattered Radiation?
    Johansen S; Hauge IHR; Hogg P; England A; Lança L; Gunn C; Sanderud A
    J Med Imaging Radiat Sci; 2018 Jun; 49(2):201-206. PubMed ID: 32074039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology.
    Malekzadeh R; Mehnati P; Sooteh MY; Mesbahi A
    Radiol Phys Technol; 2019 Sep; 12(3):325-334. PubMed ID: 31385155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the radiation protection effect of different radiation protection aprons made of different materials.
    König AM; Verbe Zoum J; Fiebich M; Abissi PW; Mahnken AH
    Eur J Radiol; 2023 Jul; 164():110862. PubMed ID: 37209465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shielding performance of multi-metal nanoparticle composites for diagnostic radiology: an MCNPX and Geant4 study.
    Asadpour N; Malekzadeh R; Rajabpour S; Refahi S; Mehnati P; Shanei A
    Radiol Phys Technol; 2023 Mar; 16(1):57-68. PubMed ID: 36562940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How efficient are metal-polymer and dual-metals-polymer non-lead radiation shields?
    Salehi Z; Tayebi Khorami M
    J Med Radiat Sci; 2024 Mar; 71(1):57-62. PubMed ID: 37875268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lightweight Lead Aprons: The Emperor's New Clothes in the Angiography Suite?
    Lu H; Boyd C; Dawson J
    Eur J Vasc Endovasc Surg; 2019 May; 57(5):730-739. PubMed ID: 31005510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities.
    Kharrati H; Agrebi A; Karaoui MK
    Med Phys; 2007 Apr; 34(4):1398-404. PubMed ID: 17500471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Lead Protective Aprons for the Protection of Interventional Radiology Physicians from Radiation Exposure in Clinical Settings: An Initial Study.
    Kato M; Chida K; Munehisa M; Sato T; Inaba Y; Suzuki M; Zuguchi M
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34573955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation shielding assessment for interventional radiology personnel: Geant4 dosimetry of lead-free compositions.
    Moradi F; Jalili M; Saraee KRE; Abdi MR; Rashid HAA
    Biomed Phys Eng Express; 2024 Feb; 10(2):. PubMed ID: 38320327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the (f)utility of measuring the lead equivalence of protective garments.
    Jones AK; Wagner LK
    Med Phys; 2013 Jun; 40(6):063902. PubMed ID: 23718618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite materials for x-ray protection.
    Yaffe MJ; Mawdsley GE; Lilley M; Servant R; Reh G
    Health Phys; 1991 May; 60(5):661-4. PubMed ID: 2019497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-weight lead aprons--light on weight, protection or labelling accuracy?
    Muir S; McLeod R; Dove R
    Australas Phys Eng Sci Med; 2005 Jun; 28(2):128-30. PubMed ID: 16060320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of non-lead-based protective radiological material in spinal surgery.
    Scuderi GJ; Brusovanik GV; Campbell DR; Henry RP; Kwon B; Vaccaro AR
    Spine J; 2006; 6(5):577-82. PubMed ID: 16934731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.