BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26158059)

  • 21. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations.
    McMillan K; McNitt-Gray M; Ruan D
    Med Phys; 2013 Nov; 40(11):111907. PubMed ID: 24320440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of compensator and imaging geometry on the distribution of x-ray scatter in CBCT.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2011 Feb; 38(2):897-914. PubMed ID: 21452727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EGS_cbct: Simulation of a fan beam CT and RMI phantom for measured HU verification.
    van Eeden D; du Plessis F
    Phys Med; 2016 Oct; 32(10):1375-1380. PubMed ID: 27682511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.
    Manohar N; Jones BL; Cho SH
    Med Phys; 2014 Oct; 41(10):101906. PubMed ID: 25281958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of dosimetric properties among four commercial multi-detector computed tomography scanners.
    Ohno T; Araki F; Onizuka R; Hatemura M; Shimonobou T; Sakamoto T; Okumura S; Ideguchi D; Honda K; Kawata K
    Phys Med; 2017 Mar; 35():50-58. PubMed ID: 28254400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A virtual source model for kilo-voltage cone beam CT: source characteristics and model validation.
    Spezi E; Volken W; Frei D; Fix MK
    Med Phys; 2011 Sep; 38(9):5254-63. PubMed ID: 21978069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination and verification of the x-ray spectrum of a CT scanner.
    Hassan AI; Skalej M; Schlattl H; Hoeschen C
    J Med Imaging (Bellingham); 2018 Jan; 5(1):013506. PubMed ID: 29430476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical Note: Using linear and polynomial approximations to correct IEC CTDI measurements for a wide-beam CT scanner.
    Weir VJ; Zhang J
    Med Phys; 2019 Nov; 46(11):5360-5365. PubMed ID: 31484208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correction of Bowtie-Filter Normalization and Crescent Artifacts for a Clinical CBCT System.
    Zhang H; Kong V; Huang K; Jin JY
    Technol Cancer Res Treat; 2017 Feb; 16(1):81-91. PubMed ID: 26834116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam.
    Lee PC
    Med Phys; 1997 Sep; 24(9):1485-9. PubMed ID: 9304577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid-filled dynamic bowtie filter: Description and comparison with other modulators.
    Shunhavanich P; Hsieh SS; Pelc NJ
    Med Phys; 2019 Jan; 46(1):127-139. PubMed ID: 30383310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Half-Fan-Based Intensity-Weighted Region-of-Interest Imaging for Low-Dose Cone-Beam CT in Image-Guided Radiation Therapy.
    Yoo B; Son K; Pua R; Kim J; Solodov A; Cho S
    Healthc Inform Res; 2016 Oct; 22(4):316-325. PubMed ID: 27895964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoupling of bowtie and object effects for beam hardening and scatter artefact reduction in iterative cone-beam CT.
    Cai M; Byrne M; Archibald-Heeren B; Metcalfe P; Rosenfeld A; Wang Y
    Phys Eng Sci Med; 2020 Dec; 43(4):1161-1170. PubMed ID: 32813233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technical Note: On maximizing Cherenkov emissions from medical linear accelerators.
    Shrock Z; Yoon SW; Gunasingha R; Oldham M; Adamson J
    Med Phys; 2018 Jul; 45(7):3315-3320. PubMed ID: 29672860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photon count rates estimated from 1980 clinical CT scans.
    Szczykutowicz TP; Bujila R; Yin Z; Slavic S; Maltz J
    Med Phys; 2022 Dec; 49(12):7458-7468. PubMed ID: 36195999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image.
    Wang J; Duan X; Christner JA; Leng S; Yu L; McCollough CH
    Med Phys; 2012 Nov; 39(11):6764-71. PubMed ID: 23127070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
    Dalaryd M; Knöös T; Ceberg C
    Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo assessment of CT dose equilibration in PMMA and water cylinders with diameters from 6 to 55 cm.
    Li X; Zhang D; Liu B
    Med Phys; 2013 Mar; 40(3):031903. PubMed ID: 23464318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A rapid noninvasive characterization of CT x-ray sources.
    Randazzo M; Tambasco M
    Med Phys; 2015 Jul; 42(7):3960-8. PubMed ID: 26133596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and Monte Carlo-based determination of the beam quality specifier for TomoTherapyHD treatment units.
    Howitz S; Schwedas M; Wiezorek T; Zink K
    Z Med Phys; 2018 Apr; 28(2):142-149. PubMed ID: 29031915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.