BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26158200)

  • 1. Involvement of microRNA214 and transcriptional regulation in reductions in mevalonate pyrophosphate decarboxylase mRNA levels in stroke-prone spontaneously hypertensive rat livers.
    Michihara A; Ide N; Mizutani Y; Okamoto M; Uchida M; Matsuoka H; Akasaki K
    Biosci Biotechnol Biochem; 2015; 79(11):1759-70. PubMed ID: 26158200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of subcellular distribution of mevalonate pyrophosphate decarboxylase between stroke-prone spontaneously hypertensive rat and Wistar Kyoto rat.
    Michihara A; Sawamura M; Yamori Y; Akasaki K; Tsuji H
    Biol Pharm Bull; 2002 Jun; 25(6):734-7. PubMed ID: 12081138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower mevalonate pyrophosphate decarboxylase activity is caused by the reduced amount of enzyme in stroke-prone spontaneously hypertensive rat.
    Michihara A; Sawamura M; Nara Y; Ikeda K; Yamori Y
    J Biochem; 1998 Jul; 124(1):40-4. PubMed ID: 9644243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of biochemical properties and protein level of mevalonate pyrophosphate decarboxylase between stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats].
    Michihara A
    Yakugaku Zasshi; 2004 Oct; 124(10):683-92. PubMed ID: 15467276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mevalonate pyrophosphate decarboxylase in stroke-prone spontaneously hypertensive rat is reduced from the age of two weeks.
    Michihara A; Sawamura M; Yamori Y; Akasaki K; Tsuji H
    Biol Pharm Bull; 2001 Dec; 24(12):1417-9. PubMed ID: 11767113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stroke-prone spontaneously hypertensive rats have reduced hydroxysteroid 17-β dehydrogenase 7 levels for low cholesterol biosynthesis.
    Matsuoka H; Uchino Y; Choshi M; Nakamura T; Michihara A
    Clin Exp Pharmacol Physiol; 2020 Feb; 47(2):255-262. PubMed ID: 31587341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver mevalonate 5-pyrophosphate decarboxylase is responsible for reduced serum cholesterol in stroke-prone spontaneously hypertensive rat.
    Sawamura M; Nara Y; Yamori Y
    J Biol Chem; 1992 Mar; 267(9):6051-5. PubMed ID: 1556116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.
    Michihara A; Mido M; Matsuoka H; Mizutani Y
    Biol Pharm Bull; 2015; 38(12):1879-90. PubMed ID: 26632180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats.
    Matsuoka H; Tamura A; Kinehara M; Shima A; Uda A; Tahara H; Michihara A
    Biochem Biophys Res Commun; 2018 Apr; 498(4):817-823. PubMed ID: 29530526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of constitutive gene expression levels of hepatic cholesterol biosynthetic enzymes between Wistar-Kyoto and stroke-prone spontaneously hypertensive rats.
    Nemoto K; Ikeda A; Ito S; Miyata M; Yoshida C; Degawa M
    Biol Pharm Bull; 2013; 36(7):1216-20. PubMed ID: 23585482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-brain barrier function.
    Ishida H; Takemori K; Dote K; Ito H
    Am J Hypertens; 2006 Jan; 19(1):33-9. PubMed ID: 16461188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A twofold genetic increase of ACE expression has no effect on the development of spontaneous hypertension.
    Nassar I; Schulz A; Bernardy C; Garrelds IM; Plehm R; Huber M; Danser AH; Kreutz R
    Am J Hypertens; 2008 Feb; 21(2):200-5. PubMed ID: 18174884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet.
    Di Castro S; Scarpino S; Marchitti S; Bianchi F; Stanzione R; Cotugno M; Sironi L; Gelosa P; Duranti E; Ruco L; Volpe M; Rubattu S
    Hypertension; 2013 Feb; 61(2):534-41. PubMed ID: 23297375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain.
    Yoshida M; Watanabe Y; Yamanishi K; Yamashita A; Yamamoto H; Okuzaki D; Shimada K; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H
    Int J Mol Med; 2014 Apr; 33(4):887-96. PubMed ID: 24452243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats.
    Ikeda I; Nakagiri H; Sugano M; Ohara S; Hamada T; Nonaka M; Imaizumi K
    Metabolism; 2001 Nov; 50(11):1361-8. PubMed ID: 11699058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic effects of a fructose diet in the stroke-prone spontaneously hypertensive rat.
    Brosnan MJ; Carkner RD
    Am J Hypertens; 2008 Jun; 21(6):708-14. PubMed ID: 18437120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: Gene expression profiles in the kidneys.
    Watanabe Y; Yoshida M; Yamanishi K; Yamamoto H; Okuzaki D; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H
    Int J Mol Med; 2015 Sep; 36(3):712-24. PubMed ID: 26165378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats.
    Yamamoto H; Okuzaki D; Yamanishi K; Xu Y; Watanabe Y; Yoshida M; Yamashita A; Goto N; Nishiguchi S; Shimada K; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H
    Int J Mol Med; 2013 May; 31(5):1057-65. PubMed ID: 23525202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model.
    Ueno M; Wu B; Nishiyama A; Huang CL; Hosomi N; Kusaka T; Nakagawa T; Onodera M; Kido M; Sakamoto H
    Hypertens Res; 2009 May; 32(5):332-8. PubMed ID: 19300451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of receptors and enzymes regulating cholesterol levels in liver between SHR/NDmcr-cp rats and normotensive Wistar Kyoto rats at ten weeks of age.
    Michihara A; Anraku M; Abe A; Kinoshita H; Kamizaki Y; Tomida H; Akasaki K
    Biol Pharm Bull; 2011; 34(7):1116-9. PubMed ID: 21720022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.