These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 26158219)
1. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts. Liu Y; Guo SX; Ding L; Ohlin CA; Bond AM; Zhang J ACS Appl Mater Interfaces; 2015 Aug; 7(30):16632-44. PubMed ID: 26158219 [TBL] [Abstract][Full Text] [Related]
2. Facile electrochemical co-deposition of a graphene-cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions. Guo SX; Liu Y; Bond AM; Zhang J; Esakki Karthik P; Maheshwaran I; Senthil Kumar S; Phani KL Phys Chem Chem Phys; 2014 Sep; 16(35):19035-45. PubMed ID: 25093585 [TBL] [Abstract][Full Text] [Related]
3. Cobalt porphyrin electrode films for electrocatalytic water oxidation. Han A; Jia H; Ma H; Ye S; Wu H; Lei H; Han Y; Cao R; Du P Phys Chem Chem Phys; 2014 Jun; 16(23):11209-17. PubMed ID: 24777036 [TBL] [Abstract][Full Text] [Related]
4. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. Singh A; Fekete M; Gengenbach T; Simonov AN; Hocking RK; Chang SL; Rothmann M; Powar S; Fu D; Hu Z; Wu Q; Cheng YB; Bach U; Spiccia L ChemSusChem; 2015 Dec; 8(24):4266-74. PubMed ID: 26617200 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Han Y; Wu Y; Lai W; Cao R Inorg Chem; 2015 Jun; 54(11):5604-13. PubMed ID: 25985258 [TBL] [Abstract][Full Text] [Related]
6. Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation. Zhou X; Zhang T; Abney CW; Li Z; Lin W ACS Appl Mater Interfaces; 2014 Nov; 6(21):18475-9. PubMed ID: 25347590 [TBL] [Abstract][Full Text] [Related]
7. In situ growth of Ni(x)Co(100-x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. Bai S; Shen X; Zhu G; Li M; Xi H; Chen K ACS Appl Mater Interfaces; 2012 May; 4(5):2378-86. PubMed ID: 22486337 [TBL] [Abstract][Full Text] [Related]
8. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts. Chen G; Chen L; Ng SM; Lau TC ChemSusChem; 2014 Jan; 7(1):127-34. PubMed ID: 24155063 [TBL] [Abstract][Full Text] [Related]
9. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. Tao S; Yang F; Schuch J; Jaegermann W; Kaiser B ChemSusChem; 2018 Mar; 11(5):948-958. PubMed ID: 29227580 [TBL] [Abstract][Full Text] [Related]
10. Tungsten Carbide and Cobalt Modified Nickel Nanoparticles Supported on Multiwall Carbon Nanotubes as Highly Efficient Electrocatalysts for Urea Oxidation in Alkaline Electrolyte. Wang L; Liu Z; Zhu S; Shao M; Yang B; Chen JG ACS Appl Mater Interfaces; 2018 Dec; 10(48):41338-41343. PubMed ID: 30398838 [TBL] [Abstract][Full Text] [Related]
11. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry. Lee CY; Guo SX; Murphy AF; McCormac T; Zhang J; Bond AM; Zhu G; Hill CL; Geletii YV Inorg Chem; 2012 Nov; 51(21):11521-32. PubMed ID: 23092201 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical and XPS Study of the Nickel-Titanium Electrode Surface. Luo PF; Kuwana T; Paul DK; Sherwood PM Anal Chem; 1996 Oct; 68(19):3330-7. PubMed ID: 21619268 [TBL] [Abstract][Full Text] [Related]
14. A novel viewpoint of an imidazole derivative ionic liquid as an additive for cobalt and nickel electrodeposition. Omar IMA; Emran KM; Aziz M; Al-Fakih AM RSC Adv; 2020 Aug; 10(53):32113-32126. PubMed ID: 35518144 [TBL] [Abstract][Full Text] [Related]
15. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. Smith RD; Prévot MS; Fagan RD; Trudel S; Berlinguette CP J Am Chem Soc; 2013 Aug; 135(31):11580-6. PubMed ID: 23883103 [TBL] [Abstract][Full Text] [Related]
16. Electrocatalytic Oxidation of Methanol, Ethanol, and Glycerol on Ni(OH) Bott-Neto JL; Martins TS; Machado SAS; Ticianelli EA ACS Appl Mater Interfaces; 2019 Aug; 11(34):30810-30818. PubMed ID: 31369703 [TBL] [Abstract][Full Text] [Related]
17. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. Chen M; Wu Y; Han Y; Lin X; Sun J; Zhang W; Cao R ACS Appl Mater Interfaces; 2015 Oct; 7(39):21852-9. PubMed ID: 26368828 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of mesoporous spinel NiCo₂O₄ nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Ding R; Qi L; Jia M; Wang H Nanoscale; 2014; 6(3):1369-76. PubMed ID: 24306055 [TBL] [Abstract][Full Text] [Related]
19. Electrodeposited Nickel-Cobalt-Sulfide Catalyst for the Hydrogen Evolution Reaction. Irshad A; Munichandraiah N ACS Appl Mater Interfaces; 2017 Jun; 9(23):19746-19755. PubMed ID: 28513129 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of the composite films formed by zeolitic imidazolate framework 8 (ZIF-8) and porous nickel films for enhanced amperometric sensing of hydrazine. Shi E; Lin H; Wang Q; Zhang F; Shi S; Zhang T; Li X; Niu H; Qu F Dalton Trans; 2017 Jan; 46(2):554-563. PubMed ID: 27975085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]