BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26158264)

  • 1. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.
    Mamberti S; Prati P; Cremaschi P; Seppi C; Morelli CF; Galizzi A; Fabbi M; Calvio C
    PLoS One; 2015; 10(7):e0130810. PubMed ID: 26158264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate.
    Kimura K; Itoh Y
    Appl Environ Microbiol; 2003 May; 69(5):2491-7. PubMed ID: 12732513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase.
    Ozaki T; Abe N; Kimura K; Suzuki A; Kaneko J
    Biosci Biotechnol Biochem; 2017 Jan; 81(1):135-146. PubMed ID: 27885938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of bacteriophage ϕNIT1 zinc peptidase PghP that hydrolyzes γ-glutamyl linkage of bacterial poly-γ-glutamate.
    Fujimoto Z; Kimura K
    Proteins; 2012 Mar; 80(3):722-32. PubMed ID: 22105902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation.
    Suzuki T; Tahara Y
    J Bacteriol; 2003 Apr; 185(7):2379-82. PubMed ID: 12644511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary crystallographic analysis of poly-gamma-glutamate hydrolase from bacteriophage PhiNIT1.
    Fujimoto Z; Shiga I; Itoh Y; Kimura K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Sep; 65(Pt 9):913-6. PubMed ID: 19724131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases.
    Fukushima T; Uchida N; Ide M; Kodama T; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):277-286. PubMed ID: 29458655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.
    Umene K; Shiraishi A
    Virus Genes; 2013 Jun; 46(3):524-34. PubMed ID: 23315235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain.
    Yeh CM; Wang JP; Lo SC; Chan WC; Lin MY
    Biotechnol Prog; 2010; 26(4):1001-7. PubMed ID: 20564357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis.
    Zhu J; Wang X; Zhao J; Ji F; Zeng J; Wei Y; Xu L; Dong G; Ma X; Wang C
    BMC Microbiol; 2024 Apr; 24(1):125. PubMed ID: 38622505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete Nucleotide Sequence Analysis of a Novel
    Ghosh K; Senevirathne A; Kang HS; Hyun WB; Kim JE; Kim KP
    Viruses; 2018 May; 10(5):. PubMed ID: 29734701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High prevalence of Bacillus subtilis-infecting bacteriophages in soybean-based fermented foods and its detrimental effects on the process and quality of Cheonggukjang.
    Ghosh K; Kang HS; Hyun WB; Kim KP
    Food Microbiol; 2018 Dec; 76():196-203. PubMed ID: 30166141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of PghL hydrolase bound to its substrate poly-γ-glutamate.
    Ramaswamy S; Rasheed M; Morelli CF; Calvio C; Sutton BJ; Pastore A
    FEBS J; 2018 Dec; 285(24):4575-4589. PubMed ID: 30387270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the hydrolyzed product (F-2) released from gamma-polyglutamic acid by gamma-glutamyl hydrolase YwtD of Bacillus subtilis.
    Chunhachart O; Hanayama T; Hidesaki M; Tanimoto H; Tahara Y
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2289-91. PubMed ID: 16960367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis.
    Scorpio A; Chabot DJ; Day WA; O'brien DK; Vietri NJ; Itoh Y; Mohamadzadeh M; Friedlander AM
    Antimicrob Agents Chemother; 2007 Jan; 51(1):215-22. PubMed ID: 17074794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis.
    Scoffone V; Dondi D; Biino G; Borghese G; Pasini D; Galizzi A; Calvio C
    Biotechnol Bioeng; 2013 Jul; 110(7):2006-12. PubMed ID: 23335395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subspecies-specific distribution of intervening sequences in the Bacillus subtilis prophage ribonucleotide reductase genes.
    Stankovic S; Soldo B; Beric-Bjedov T; Knezevic-Vukcevic J; Simic D; Lazarevic V
    Syst Appl Microbiol; 2007 Jan; 30(1):8-15. PubMed ID: 16621400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling.
    Zeng W; Chen G; Wu H; Wang J; Liu Y; Guo Y; Liang Z
    Microb Biotechnol; 2016 Nov; 9(6):824-833. PubMed ID: 27562078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and phylogenetic analyses based on nitrogen in a new poly-γ-glutamic acid-producing strain of Bacillus subtilis.
    Ren Y; Huang B; Meng Y; Wei L; Zhang C
    Biotechnol Lett; 2015 Jun; 37(6):1221-6. PubMed ID: 25700815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion.
    Jiang S; Fan L; Zhao M; Qiu Y; Zhao L
    Appl Biochem Biotechnol; 2019 Oct; 189(2):411-423. PubMed ID: 31037584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.