These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 26158394)
1. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics Study of Grape Composition. Narduzzi L; Stanstrup J; Mattivi F J Agric Food Chem; 2015 Aug; 63(30):6823-34. PubMed ID: 26158394 [TBL] [Abstract][Full Text] [Related]
2. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition. Šuklje K; Zhang X; Antalick G; Clark AC; Deloire A; Schmidtke LM J Agric Food Chem; 2016 Feb; 64(4):870-80. PubMed ID: 26761394 [TBL] [Abstract][Full Text] [Related]
3. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. Cauduro Girardello R; Rich V; Smith RJ; Brenneman C; Heymann H; Oberholster A J Sci Food Agric; 2020 Mar; 100(4):1436-1447. PubMed ID: 31742703 [TBL] [Abstract][Full Text] [Related]
4. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species. Koyama K; Kamigakiuchi H; Iwashita K; Mochioka R; Goto-Yamamoto N Phytochemistry; 2017 Feb; 134():78-86. PubMed ID: 27887737 [TBL] [Abstract][Full Text] [Related]
5. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level. Li X; Wu B; Wang L; Li S J Agric Food Chem; 2006 Nov; 54(23):8804-11. PubMed ID: 17090126 [TBL] [Abstract][Full Text] [Related]
6. The metabolomic profile of red non-V. vinifera genotypes. Ruocco S; Stefanini M; Stanstrup J; Perenzoni D; Mattivi F; Vrhovsek U Food Res Int; 2017 Aug; 98():10-19. PubMed ID: 28610726 [TBL] [Abstract][Full Text] [Related]
7. Double maturation raisonnée: the impact of on-vine berry dehydration on the berry and wine composition of Merlot (Vitis vinifera L.). Rusjan D; Mikulic-Petkovsek M J Sci Food Agric; 2017 Nov; 97(14):4835-4846. PubMed ID: 28382623 [TBL] [Abstract][Full Text] [Related]
8. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. Parker M; Capone DL; Francis IL; Herderich MJ J Agric Food Chem; 2018 Mar; 66(10):2281-2286. PubMed ID: 28220693 [TBL] [Abstract][Full Text] [Related]
10. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related]
11. Tracing phenolic metabolism in Vitis vinifera berries with 13C6-phenylalanine: implication of an unidentified intermediate reservoir. Chassy AW; Adams DO; Waterhouse AL J Agric Food Chem; 2014 Mar; 62(11):2321-6. PubMed ID: 24611798 [TBL] [Abstract][Full Text] [Related]
12. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.). Martínez-Lüscher J; Chen CCL; Brillante L; Kurtural SK J Agric Food Chem; 2017 Dec; 65(49):10693-10702. PubMed ID: 29141407 [TBL] [Abstract][Full Text] [Related]
13. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species. Sun Q; Gates MJ; Lavin EH; Acree TE; Sacks GL J Agric Food Chem; 2011 Oct; 59(19):10657-64. PubMed ID: 21879766 [TBL] [Abstract][Full Text] [Related]
14. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes. Zhang P; Fuentes S; Siebert T; Krstic M; Herderich M; Barlow EWR; Howell K Food Chem; 2016 Aug; 204():463-474. PubMed ID: 26988525 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes ( Sun L; Fan X; Zhang Y; Jiang J; Sun H; Liu C Hereditas; 2016; 153():17. PubMed ID: 28096779 [TBL] [Abstract][Full Text] [Related]
16. Effects of gibberellic acid (GA Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978 [TBL] [Abstract][Full Text] [Related]
17. Vitis vinifera Turkish grape cultivar Karaerik. Part I: anthocyanin composition, and identification of a newly found anthocyanin Hermosín-Gutiérrez I; Gómez-Alonso S; Pérez-Navarro J; Kurt A; Colak N; Akpınar E; Hayirlioglu-Ayaz S; Ayaz FA J Sci Food Agric; 2020 Feb; 100(3):1301-1310. PubMed ID: 31743440 [TBL] [Abstract][Full Text] [Related]
18. Quality Characteristics and Anthocyanin Profiles of Different Zhu L; Li X; Hu X; Wu X; Liu Y; Yang Y; Zang Y; Tang H; Wang C; Xu J Molecules; 2021 Nov; 26(21):. PubMed ID: 34771105 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of Vitis vinifera L. and hybrid red grapes by matrix-assisted laser desorption/ionization mass spectrometry analysis of berry skin anthocyanins. Picariello G; Ferranti P; Chianese L; Addeo F J Agric Food Chem; 2012 May; 60(18):4559-66. PubMed ID: 22512639 [TBL] [Abstract][Full Text] [Related]
20. Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Ghaste M; Narduzzi L; Carlin S; Vrhovsek U; Shulaev V; Mattivi F Food Chem; 2015 Dec; 188():309-19. PubMed ID: 26041197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]