These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26158406)

  • 1. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.
    Walpole J; Chappell JC; Cluceru JG; Mac Gabhann F; Bautch VL; Peirce SM
    Integr Biol (Camb); 2015 Sep; 7(9):987-97. PubMed ID: 26158406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting.
    Qutub AA; Popel AS
    BMC Syst Biol; 2009 Jan; 3():13. PubMed ID: 19171061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
    Vaeyens MM; Jorge-Peñas A; Barrasa-Fano J; Steuwe C; Heck T; Carmeliet P; Roeffaers M; Van Oosterwyck H
    Angiogenesis; 2020 Aug; 23(3):315-324. PubMed ID: 31997048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous and discrete mathematical models of tumor-induced angiogenesis.
    Anderson AR; Chaplain MA
    Bull Math Biol; 1998 Sep; 60(5):857-99. PubMed ID: 9739618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis.
    Santos-Oliveira P; Correia A; Rodrigues T; Ribeiro-Rodrigues TM; Matafome P; Rodríguez-Manzaneque JC; Seiça R; Girão H; Travasso RD
    PLoS Comput Biol; 2015 Aug; 11(8):e1004436. PubMed ID: 26248210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of repulsive factors in vascularization dynamics.
    Di Talia S; Gamba A; Lamberti F; Serini G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041917. PubMed ID: 16711846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation.
    Chappell JC; Cluceru JG; Nesmith JE; Mouillesseaux KP; Bradley VB; Hartland CM; Hashambhoy-Ramsay YL; Walpole J; Peirce SM; Mac Gabhann F; Bautch VL
    Cardiovasc Res; 2016 Jul; 111(1):84-93. PubMed ID: 27142980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression.
    Hosseini F; Naghavi N
    J Biomed Phys Eng; 2017 Sep; 7(3):233-256. PubMed ID: 29082215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling of angiogenesis.
    Chaplain MA
    J Neurooncol; 2000; 50(1-2):37-51. PubMed ID: 11245280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.
    Stepanova D; Byrne HM; Maini PK; Alarcón T
    WIREs Mech Dis; 2024; 16(2):e1634. PubMed ID: 38084799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4151-7. PubMed ID: 26552886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to enhance capillary formation inside biomaterials: a computational study.
    Jabbarzadeh E; Abrams CF
    Tissue Eng; 2007 Aug; 13(8):2073-86. PubMed ID: 17590150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology.
    Das A; Lauffenburger D; Asada H; Kamm RD
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1921):2937-60. PubMed ID: 20478915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis Invasion Assay to Study Endothelial Cell Invasion and Sprouting Behavior.
    Dong Y; Alonso F; Jahjah T; Fremaux I; Génot E
    Methods Mol Biol; 2023; 2608():345-364. PubMed ID: 36653717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro.
    Nguyen DH; Stapleton SC; Yang MT; Cha SS; Choi CK; Galie PA; Chen CS
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6712-7. PubMed ID: 23569284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary network patterning during angiogenesis.
    Hansen-Smith FM
    Clin Exp Pharmacol Physiol; 2000 Oct; 27(10):830-5. PubMed ID: 11022978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulations of angiogenesis in the cornea.
    Tong S; Yuan F
    Microvasc Res; 2001 Jan; 61(1):14-27. PubMed ID: 11162192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis.
    Bauer AL; Jackson TL; Jiang Y
    Biophys J; 2007 May; 92(9):3105-21. PubMed ID: 17277180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products.
    Aubin K; Vincent C; Proulx M; Mayrand D; Fradette J
    Acta Biomater; 2015 Jan; 11():333-45. PubMed ID: 25278444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage.
    Walpole J; Mac Gabhann F; Peirce SM; Chappell JC
    Microcirculation; 2017 Nov; 24(8):. PubMed ID: 28791758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.