These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 26158728)

  • 1. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Gene-Disease Association by an Integrative Analysis of eQTL Genome-Wide Association Study and Protein-Protein Interaction Data.
    Wang J; Zheng J; Wang Z; Li H; Deng M
    Hum Hered; 2018; 83(3):117-129. PubMed ID: 30669151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomics complements quantitative genetics in identifying disease-gene associations.
    Guan Y; Ackert-Bicknell CL; Kell B; Troyanskaya OG; Hibbs MA
    PLoS Comput Biol; 2010 Nov; 6(11):e1000991. PubMed ID: 21085640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DISEASES: text mining and data integration of disease-gene associations.
    Pletscher-Frankild S; Pallejà A; Tsafou K; Binder JX; Jensen LJ
    Methods; 2015 Mar; 74():83-9. PubMed ID: 25484339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis.
    Dinu V; Zhao H; Miller PL
    J Biomed Inform; 2007 Dec; 40(6):750-60. PubMed ID: 17625973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mapping and annotation of genetic associations with FUMA.
    Watanabe K; Taskesen E; van Bochoven A; Posthuma D
    Nat Commun; 2017 Nov; 8(1):1826. PubMed ID: 29184056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network.assisted analysis to prioritize GWAS results: principles, methods and perspectives.
    Jia P; Zhao Z
    Hum Genet; 2014 Feb; 133(2):125-38. PubMed ID: 24122152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA.
    Kim HJ; Yu Z; Lawson A; Zhao H; Chung D
    Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein network inference from multiple genomic data: a supervised approach.
    Yamanishi Y; Vert JP; Kanehisa M
    Bioinformatics; 2004 Aug; 20 Suppl 1():i363-70. PubMed ID: 15262821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia.
    Jia P; Wang L; Fanous AH; Pato CN; Edwards TL; ; Zhao Z
    PLoS Comput Biol; 2012; 8(7):e1002587. PubMed ID: 22792057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging heterogeneous mutation data to enhance disease gene discovery.
    Zhou K; Wang Y; Bretonnel Cohen K; Kim JD; Ma X; Shen Z; Meng X; Xia J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33847357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided visual exploration of genomic stratifications in cancer.
    Streit M; Lex A; Gratzl S; Partl C; Schmalstieg D; Pfister H; Park PJ; Gehlenborg N
    Nat Methods; 2014 Sep; 11(9):884-885. PubMed ID: 25166867
    [No Abstract]   [Full Text] [Related]  

  • 17. Identifying consensus disease pathways in Parkinson's disease using an integrative systems biology approach.
    Edwards YJ; Beecham GW; Scott WK; Khuri S; Bademci G; Tekin D; Martin ER; Jiang Z; Mash DC; ffrench-Mullen J; Pericak-Vance MA; Tsinoremas N; Vance JM
    PLoS One; 2011 Feb; 6(2):e16917. PubMed ID: 21364952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene2DisCo: Gene to disease using disease commonalities.
    Frasca M
    Artif Intell Med; 2017 Oct; 82():34-46. PubMed ID: 28882544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks.
    Jia P; Zheng S; Long J; Zheng W; Zhao Z
    Bioinformatics; 2011 Jan; 27(1):95-102. PubMed ID: 21045073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.