These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26158871)
1. China's rising hydropower demand challenges water sector. Liu J; Zhao D; Gerbens-Leenes PW; Guan D Sci Rep; 2015 Jul; 5():11446. PubMed ID: 26158871 [TBL] [Abstract][Full Text] [Related]
2. The monthly dynamics of blue water footprints and electricity generation of four types of hydropower plants in Ecuador. Vaca-Jiménez S; Gerbens-Leenes PW; Nonhebel S Sci Total Environ; 2020 Apr; 713():136579. PubMed ID: 31955088 [TBL] [Abstract][Full Text] [Related]
3. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008). Zhuo L; Mekonnen MM; Hoekstra AY Water Res; 2016 May; 94():73-85. PubMed ID: 26938494 [TBL] [Abstract][Full Text] [Related]
4. Assessing the water and carbon footprint of hydropower stations at a national scale. Wang J; Chen X; Liu Z; Frans VF; Xu Z; Qiu X; Xu F; Li Y Sci Total Environ; 2019 Aug; 676():595-612. PubMed ID: 31051366 [TBL] [Abstract][Full Text] [Related]
5. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia. Mereu S; Sušnik J; Trabucco A; Daccache A; Vamvakeridou-Lyroudia L; Renoldi S; Virdis A; Savić D; Assimacopoulos D Sci Total Environ; 2016 Feb; 543(Pt B):1028-38. PubMed ID: 26051595 [TBL] [Abstract][Full Text] [Related]
6. Hydropower and sustainability: resilience and vulnerability in China's powersheds. McNally A; Magee D; Wolf AT J Environ Manage; 2009 Jul; 90 Suppl 3():S286-93. PubMed ID: 19013007 [TBL] [Abstract][Full Text] [Related]
7. Water Scarcity Assessment of Hydropower Plants in China under Climate Change, Sectoral Competition, and Energy Expansion. Hou L; Yang J; Ji C; Liu M; Fang W; Ma Z; Bi J Environ Sci Technol; 2024 Jun; 58(24):10536-10547. PubMed ID: 38833510 [TBL] [Abstract][Full Text] [Related]
8. Water-electricity nexus in Ecuador: The dynamics of the electricity's blue water footprint. Vaca-Jiménez S; Gerbens-Leenes PW; Nonhebel S Sci Total Environ; 2019 Dec; 696():133959. PubMed ID: 31445236 [TBL] [Abstract][Full Text] [Related]
9. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Do P; Tian F; Zhu T; Zohidov B; Ni G; Lu H; Liu H Sci Total Environ; 2020 Aug; 728():137996. PubMed ID: 32570321 [TBL] [Abstract][Full Text] [Related]
10. Water scarcity footprint of hydropower based on a seasonal approach - Global assessment with sensitivities of model assumptions tested on specific cases. Pfister S; Scherer L; Buxmann K Sci Total Environ; 2020 Jul; 724():138188. PubMed ID: 32247123 [TBL] [Abstract][Full Text] [Related]
11. Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. Zhuo L; Hoekstra AY; Wu P; Zhao X Sci Total Environ; 2019 Feb; 650(Pt 1):891-899. PubMed ID: 30308863 [TBL] [Abstract][Full Text] [Related]
12. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework. Si Y; Li X; Yin D; Liu R; Wei J; Huang Y; Li T; Liu J; Gu S; Wang G PLoS One; 2018; 13(1):e0191483. PubMed ID: 29370206 [TBL] [Abstract][Full Text] [Related]
13. Global impacts of energy demand on the freshwater resources of nations. Holland RA; Scott KA; Flörke M; Brown G; Ewers RM; Farmer E; Kapos V; Muggeridge A; Scharlemann JP; Taylor G; Barrett J; Eigenbrod F Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6707-16. PubMed ID: 26627262 [TBL] [Abstract][Full Text] [Related]
14. Hydropower impacts on reservoir fish populations are modified by environmental variation. Eloranta AP; Finstad AG; Helland IP; Ugedal O; Power M Sci Total Environ; 2018 Mar; 618():313-322. PubMed ID: 29131999 [TBL] [Abstract][Full Text] [Related]
15. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures. McDonald RI; Olden JD; Opperman JJ; Miller WM; Fargione J; Revenga C; Higgins JV; Powell J PLoS One; 2012; 7(11):e50219. PubMed ID: 23185581 [TBL] [Abstract][Full Text] [Related]
16. Future electricity: The challenge of reducing both carbon and water footprint. Mekonnen MM; Gerbens-Leenes PW; Hoekstra AY Sci Total Environ; 2016 Nov; 569-570():1282-1288. PubMed ID: 27387812 [TBL] [Abstract][Full Text] [Related]
17. Water-saving co-benefits of CO Peng X; Chen H; Zhong H; Long R; Zhang C; Zhao D; Yang G; Hong J; Duan C; Qi X; Wei P; Zhang P; Chen J iScience; 2023 Feb; 26(2):106035. PubMed ID: 36818288 [TBL] [Abstract][Full Text] [Related]
18. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Turner SWD; Ng JY; Galelli S Sci Total Environ; 2017 Jul; 590-591():663-675. PubMed ID: 28283290 [TBL] [Abstract][Full Text] [Related]
19. Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection. Dorber M; Arvesen A; Gernaat D; Verones F Sci Rep; 2020 Dec; 10(1):21777. PubMed ID: 33311532 [TBL] [Abstract][Full Text] [Related]
20. Influence of hydropower stations on the water microbiota in the downstream of Jinsha River, China. Chen X; He D; Zhou L; Cao Y; Li Z PeerJ; 2020; 8():e9500. PubMed ID: 32742790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]