BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26159216)

  • 1. Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation.
    Jung YJ; Kim KC; Heo JY; Jing K; Lee KE; Hwang JS; Lim K; Jo DY; Ahn JP; Kim JM; Huh KM; Park JI
    Mol Cells; 2015 Jul; 38(7):663-8. PubMed ID: 26159216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model.
    Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH
    Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH
    J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels.
    Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS
    Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering.
    Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study in vivo intraocular biocompatibility of in situ gelation hydrogels: poly(2-ethyl oxazoline)-block-poly(ε-caprolactone)-block-poly(2-ethyl oxazoline) copolymer, matrigel and pluronic F127.
    Hwang YS; Chiang PR; Hong WH; Chiao CC; Chu IM; Hsiue GH; Shen CR
    PLoS One; 2013; 8(7):e67495. PubMed ID: 23840873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.
    Moioli EK; Clark PA; Chen M; Dennis JE; Erickson HP; Gerson SL; Mao JJ
    PLoS One; 2008; 3(12):e3922. PubMed ID: 19081793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells.
    Suresh V; West JL
    Ann Biomed Eng; 2020 Mar; 48(3):1034-1044. PubMed ID: 31165294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.
    Ji X; Yuan X; Ma L; Bi B; Zhu H; Lei Z; Liu W; Pu H; Jiang J; Jiang X; Zhang Y; Xiao J
    Theranostics; 2020; 10(2):725-740. PubMed ID: 31903147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of VEGF using collagen-coated polycaprolactone scaffolds stimulates angiogenesis.
    Singh S; Wu BM; Dunn JC
    J Biomed Mater Res A; 2012 Mar; 100(3):720-7. PubMed ID: 22213643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels.
    Im H; Kim SH; Kim SH; Jung Y
    Tissue Eng Part A; 2018 Oct; 24(19-20):1518-1530. PubMed ID: 29756539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness.
    Sun AX; Lin H; Fritch MR; Shen H; Alexander PG; DeHart M; Tuan RS
    Acta Biomater; 2017 Aug; 58():302-311. PubMed ID: 28611002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro.
    Park H; Guo X; Temenoff JS; Tabata Y; Caplan AI; Kasper FK; Mikos AG
    Biomacromolecules; 2009 Mar; 10(3):541-6. PubMed ID: 19173557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells.
    Adibfar A; Amoabediny G; Baghaban Eslaminejad M; Mohamadi J; Bagheri F; Zandieh Doulabi B
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():790-799. PubMed ID: 30274113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation.
    Diaz-Gomez L; Alvarez-Lorenzo C; Concheiro A; Silva M; Dominguez F; Sheikh FA; Cantu T; Desai R; Garcia VL; Macossay J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():180-8. PubMed ID: 24857481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite.
    Ni PY; Fan M; Qian ZY; Luo JC; Gong CY; Fu SZ; Shi S; Luo F; Yang ZM
    J Biomed Mater Res A; 2012 Jan; 100(1):171-9. PubMed ID: 22009709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.