BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26159238)

  • 1. Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells.
    Mahmood K; Swain BS; Amassian A
    Nanoscale; 2015 Aug; 7(30):12812-9. PubMed ID: 26159238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.
    Hwang I; Baek M; Yong K
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27863-70. PubMed ID: 26615978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays.
    Wang BX; Liu TF; Zhou YB; Chen X; Yuan XB; Yang YY; Liu WP; Wang JM; Han HW; Tang YW
    Phys Chem Chem Phys; 2016 Oct; 18(39):27078-27082. PubMed ID: 27711679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis.
    Kegelmann L; Wolff CM; Awino C; Lang F; Unger EL; Korte L; Dittrich T; Neher D; Rech B; Albrecht S
    ACS Appl Mater Interfaces; 2017 May; 9(20):17245-17255. PubMed ID: 28436227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Core/Shell of ZnO/TiO
    Kim JM; Lee BS; Hwang SW
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32878143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.
    Yu Y; Li J; Geng D; Wang J; Zhang L; Andrew TL; Arnold MS; Wang X
    ACS Nano; 2015 Jan; 9(1):564-72. PubMed ID: 25549153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron field emission enhancement of vertically aligned ultrananocrystalline diamond-coated ZnO core-shell heterostructured nanorods.
    Sankaran KJ; Afsal M; Lou SC; Chen HC; Chen C; Lee CY; Chen LJ; Tai NH; Lin IN
    Small; 2014 Jan; 10(1):179-85. PubMed ID: 23894092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers.
    Gu H; Zhao C; Zhang Y; Shao G
    Nanotechnology; 2018 Sep; 29(38):385401. PubMed ID: 29947612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite Solar Cells with ZnO Electron-Transporting Materials.
    Zhang P; Wu J; Zhang T; Wang Y; Liu D; Chen H; Ji L; Liu C; Ahmad W; Chen ZD; Li S
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29105851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation.
    Cao J; Wu B; Chen R; Wu Y; Hui Y; Mao BW; Zheng N
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20.
    Dong X; Chen D; Zhou J; Zheng YZ; Tao X
    Nanoscale; 2018 Apr; 10(15):7218-7227. PubMed ID: 29623316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-axial electrospray: a versatile tool to fabricate hybrid electron transporting materials for high efficiency and stable perovskite photovoltaics.
    Hameed M; Mahmood K; Imran M; Nawaz F; Mehran MT
    Nanoscale Adv; 2019 Apr; 1(4):1297-1304. PubMed ID: 36132598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-layered ZnO nanostructures for efficient perovskite solar cells.
    Mahmood K; S Swain B; Amassian A
    Nanoscale; 2014 Dec; 6(24):14674-8. PubMed ID: 25373624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Perovskite Solar Cells Enabled by Anatase TiO
    Lv Y; Yuan R; Cai B; Bahrami B; Chowdhury AH; Yang C; Wu Y; Qiao Q; Liu SF; Zhang WH
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11969-11976. PubMed ID: 32293091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostructured TiO
    Li YY; Wang JG; Sun HH; Wei B
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11580-11586. PubMed ID: 29557649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells.
    Feng HL; Wu WQ; Rao HS; Wan Q; Li LB; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5199-205. PubMed ID: 25679232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO₂ nanorods.
    Jaramillo-Quintero OA; Solís de la Fuente M; Sanchez RS; Recalde IB; Juarez-Perez EJ; Rincón ME; Mora-Seró I
    Nanoscale; 2016 Mar; 8(12):6271-7. PubMed ID: 26616491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO2 Sub-microsphere Film as Scaffold Layer for Efficient Perovskite Solar Cells.
    Huang Y; Zhu J; Ding Y; Chen S; Zhang C; Dai S
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8162-7. PubMed ID: 26953635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.
    Kim DH; Han GS; Seong WM; Lee JW; Kim BJ; Park NG; Hong KS; Lee S; Jung HS
    ChemSusChem; 2015 Jul; 8(14):2392-8. PubMed ID: 25891531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells.
    Mahmud MA; Elumalai NK; Upama MB; Wang D; Zarei L; Gonçales VR; Wright M; Xu C; Haque F; Uddin A
    Nanoscale; 2018 Jan; 10(2):773-790. PubMed ID: 29256572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.