These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26159323)

  • 1. Neural sources of performance decline during continuous multitasking.
    Al-Hashimi O; Zanto TP; Gazzaley A
    Cortex; 2015 Oct; 71():49-57. PubMed ID: 26159323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
    Deprez S; Vandenbulcke M; Peeters R; Emsell L; Amant F; Sunaert S
    Neuropsychologia; 2013 Sep; 51(11):2251-60. PubMed ID: 23938320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs.
    Nashiro K; Qin S; O'Connell MA; Basak C
    Neuroimage; 2018 May; 172():146-161. PubMed ID: 29414492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks underlying the metacognitive uncertainty response.
    Paul EJ; Smith JD; Valentin VV; Turner BO; Barbey AK; Ashby FG
    Cortex; 2015 Oct; 71():306-22. PubMed ID: 26291663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building the multitasking brain: An integrated perspective on functional brain activation during task-switching and dual-tasking.
    Ward N; Hussey EK; Cunningham EC; Paul EJ; McWilliams T; Kramer AF
    Neuropsychologia; 2019 Sep; 132():107149. PubMed ID: 31348930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-task fMRI overlap predicts concurrent multitasking interference.
    Nijboer M; Borst J; van Rijn H; Taatgen N
    Neuroimage; 2014 Oct; 100():60-74. PubMed ID: 24911376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.
    Verghese A; Garner KG; Mattingley JB; Dux PE
    J Neurosci; 2016 Mar; 36(9):2638-45. PubMed ID: 26937005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval.
    Ciaramelli E; Grady CL; Moscovitch M
    Neuropsychologia; 2008; 46(7):1828-51. PubMed ID: 18471837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study.
    Schubert T; Szameitat AJ
    Brain Res Cogn Brain Res; 2003 Oct; 17(3):733-46. PubMed ID: 14561459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cue-switch effects do not rely on the same neural systems as task-switch effects.
    De Baene W; Brass M
    Cogn Affect Behav Neurosci; 2011 Dec; 11(4):600-7. PubMed ID: 21874602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks.
    Richlan F; Schubert J; Mayer R; Hutzler F; Kronbichler M
    Brain Behav; 2018 Jan; 8(1):e00877. PubMed ID: 29568680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex.
    Dux PE; Tombu MN; Harrison S; Rogers BP; Tong F; Marois R
    Neuron; 2009 Jul; 63(1):127-38. PubMed ID: 19607798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capacity constraint in the prefrontal and parietal regions for coordinating dual arithmetic tasks.
    Kuo BC; Yeh YY; Chen DY; Liang KC; Chen JH
    Brain Res; 2008 Mar; 1199():100-10. PubMed ID: 18291350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of executive functions in dual-task performance with fMRI.
    Szameitat AJ; Schubert T; Müller K; Von Cramon DY
    J Cogn Neurosci; 2002 Nov; 14(8):1184-99. PubMed ID: 12495525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking.
    Worringer B; Langner R; Koch I; Eickhoff SB; Eickhoff CR; Binkofski FC
    Brain Struct Funct; 2019 Jun; 224(5):1845-1869. PubMed ID: 31037397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.