These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26159358)

  • 1. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid.
    Basu A; Suresh Kumar G
    J Biomol Struct Dyn; 2016 May; 34(5):935-42. PubMed ID: 26159358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.
    Basu A; Kumar GS
    J Mol Recognit; 2016 Aug; 29(8):363-9. PubMed ID: 26846192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.
    Basu A; Kumar GS
    Food Chem; 2015 May; 175():137-42. PubMed ID: 25577062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minor groove binding of the food colorant carmoisine to DNA: spectroscopic and calorimetric characterization studies.
    Basu A; Kumar GS
    J Agric Food Chem; 2014 Jan; 62(1):317-26. PubMed ID: 24328331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.
    Basu A; Suresh Kumar G
    J Hazard Mater; 2016 Nov; 318():468-476. PubMed ID: 27450339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding studies of tartrazine food additive.
    Kashanian S; Zeidali SH
    DNA Cell Biol; 2011 Jul; 30(7):499-505. PubMed ID: 21476933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical studies on curcumin-deoxyribonucleic acid interaction: spectroscopic and calorimetric approach.
    Basu A; Kumar GS
    Int J Biol Macromol; 2013 Nov; 62():257-64. PubMed ID: 24041996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.
    Basu A; Kumar GS
    J Hazard Mater; 2014 May; 273():200-6. PubMed ID: 24742664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting proteins with toxic azo dyes: a microcalorimetric characterization of the interaction of the food colorant amaranth with serum proteins.
    Basu A; Kumar GS
    J Agric Food Chem; 2014 Aug; 62(31):7955-62. PubMed ID: 25033020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme.
    Basu A; Suresh Kumar G
    J Phys Chem B; 2017 Feb; 121(6):1222-1239. PubMed ID: 28094527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of aloe active compounds with calf thymus DNA.
    Das A; Suresh Kumar G; Dutta S
    J Mol Recognit; 2019 Oct; 32(10):e2786. PubMed ID: 31062439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical studies on the base specificity and energetics of the DNA interaction of photoactive dye thionine: spectroscopic and calorimetric approach.
    Paul P; Hossain M; Yadav RC; Kumar GS
    Biophys Chem; 2010 May; 148(1-3):93-103. PubMed ID: 20231052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the Interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach.
    Pan X; Qin P; Liu R; Wang J
    J Agric Food Chem; 2011 Jun; 59(12):6650-6. PubMed ID: 21591756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of total non-sulphonated aromatic amines in tartrazine, sunset yellow FCF and allura red by reduction and derivatization followed by high-performance liquid chromatography.
    Lancaster FE; Lawrence JF
    Food Addit Contam; 1991; 8(3):249-63. PubMed ID: 1778264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic investigation of the effect of salt on binding of tartrazine with two homologous serum albumins: quantification by use of the Debye-Hückel limiting law and observation of enthalpy-entropy compensation.
    Bolel P; Datta S; Mahapatra N; Halder M
    J Phys Chem B; 2012 Aug; 116(34):10195-204. PubMed ID: 22834570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine.
    Mpountoukas P; Pantazaki A; Kostareli E; Christodoulou P; Kareli D; Poliliou S; Mourelatos C; Lambropoulou V; Lialiaris T
    Food Chem Toxicol; 2010 Oct; 48(10):2934-44. PubMed ID: 20667460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the tartrazine binding mode with ds-DNA by UV-visible spectroscopy, electrochemical, and QM/MM methods.
    Arsenault-Escobar S; Fuentes-Galvez JF; Orellana C; Bollo S; Sierra-Rosales P; Miranda-Rojas S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122400. PubMed ID: 36739665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.
    Panja S; Halder M
    J Photochem Photobiol B; 2016 Aug; 161():253-65. PubMed ID: 27285817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the noncovalent binding behavior of tartrazine to lysozyme: A combined spectroscopic and computational analysis.
    Chen X; Qin P; Zheng X; Hu Z; Zong W; Zhang D; Yang B
    J Biochem Mol Toxicol; 2019 Mar; 33(3):e22258. PubMed ID: 30368991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.